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1 Introduction

1.1 Background

Variants of rational expectations storage models are central to neoclassical studies of the behavior of markets

for storable commodities (Williams and Wright, 1991, Wright, 2001). Simple versions are tested economet-

rically, for example inDeaton and Laroque(1992) and Cafiero et al.(2011). More complex models are

used to analyze the effects of public interventions in commodity markets (Miranda and Helmberger, 1988,

Gouel and Jean, 2012).

Like most dynamic stochastic problems, this model cannot besolved analytically. But contrary to most

stochastic problems studied, it presents specific numerical difficulties related to the non-negativity constraint

on storage. This feature prevents this model from being solved with popular software, such as Dynare,1

which rely on perturbation methods and cannot handle occasionally binding constraints.

The lack of user-friendly softwares to solve storage modelsin the past may have represented a serious

barrier to entry for research on these issues.2 The RECS toolbox provides a modeling environment allowing

economists to focus on the economic problem at hand, while abstracting from various issues related to the

numerical implementation.

This paper describes the RECS toolbox and also several applications of this modeling framework to com-

modity markets related issues.

This document assumes basic knowledge of Matlab,3 and of dynamic economic models (see

Adda and Cooper, 2003, for an introduction). Storage models are presented in brief; for more information

please refer to the original papers or toWilliams and Wright(1991), which provide detailed descriptions of

many of these models.

1.2 Storage modeling in the African context

Corresponding to the needs of AGRODEP members, in this section we emphasize the possible applications

of this toolbox in the context of African countries.

Given recent events on world food markets, many countries are contemplating or have introduced policies

to achieve greater independence from the world market and toprotect their vulnerable populations from

global food price spikes. Although these policies play a role in the development of many countries (see

Rashid et al., 2008, for the case of Asian countries), they often prove quite costly and difficult to manage

(Gilbert, 1996, Jayne and Jones, 1997). Because these policies are designed to affect the whole market, they

are not amenable to assessment by randomized trials as in thecase of policies targeting households. These

price policies affect the whole economy and every policy experiment can be very costly. In this situation,

1http://www.dynare.org/.
2The solversremsolve andresolve from Miranda and Fackler(2002) andFackler(2005), respectively, provided a relatively

user-friendly approach to solving such models.
3Seehttp://www.mathworks.fr/academia/student_center/tutorials/launchpad.html for tutorials.
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it is useful to be able to test and analyze stabilization policies without entailing any human or fiscal costs,

using simulated economies that represent most of the important facts related to commodity price behavior.

This points to the role of the RECS toolbox, which provides a simple environment in which policy can be

designed (for applications, seeGouel, 2011, 2013, Gouel and Jean, 2012). It can be used to compare the

costs and effectiveness of stabilization policies with other forms of interventions. For example, using RECS,

Larson et al.(2012) compare the cost of a storage policy designed to protect consumers from high prices in

Middle East and North African countries with safety nets that provide an equivalent protection. Sections5.5

and12.1present two examples of public storage policies that illustrate how RECS can be used to analyze

them.

The RECS toolbox can be useful to analyze international spillovers from domestic policies and the inter-

actions among different markets. Most domestic agricultural price stabilization policies have an effect on

partner countries. Historically, this was the case with theEuropean CAP, which stabilized the European

market for several products (e.g., dairy, wheat) through storage and trade interventions, and, in so doing,

forced the rest of the world to shoulder more important adjustments. The recent turmoil in the rice market

is a good example of what can happen when many countries, at the same moment, attempt to insulate their

markets from events on the world market (Slayton, 2009). In this context, African countries are not innocent

bystanders: they also implement policies that affect theirand their partners’ markets (Porteous, 2012). All

these situations can be analyzed using RECS, for example, byreproducing the framework ofMakki et al.

(1996, 2001). The storage-trade model presented in Section12.2can be a starting point for this analysis,

and extensions of it.

The rational expectations modeling allowed by RECS can be used also to analyze how the market reacts to

weather shocks, which might allow better calibration of theinformation needed for public interventions. An

analysis of reactions to news in a rational expectations storage model is provided for example inOsborne

(2004) for the Ethiopian grain market.

The RECS toolbox is not limited to storage models. It is designed to solve small-scale rational expectations

models, with a focus on models with occasionally binding constraints. This implies that it can be used also

to understand household production, saving and storing behavior in the presence of transaction costs and

market imperfections (seePark, 2006, for a model of Chinese rural households).

To summarize, RECS provides a user-friendly environment todevelop small dynamic, stochastic models

in which agents’ expectations of other agents’ behavior, markets and policies matter. These situations are

pervasive in developing countries’ food markets, where theimportance of food, and the risks implied by

weather and price volatility, compel households to engage in sophisticated risk coping strategies (Fafchamps,

2003).

1.3 RECS toolbox

RECS is a Matlab solver for dynamic, stochastic, rational expectations equilibrium models. RECS stands

for “Rational Expectations Complementarity Solver”. Thisname emphasizes that RECS has been developed
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specifically to solve models that include complementarity equations, also known as models with occasionally

binding constraints.

Unless stated otherwise, all files in the RECS toolbox are licensed using the Expat license, a permissive free

software license:

Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation files (the "Software"), to deal in the

Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the

Software, and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN

AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Please see the software license for more information.4

RECS source code and development version is available athttps://github.com/christophe-gouel/recs.

Bug should be reported athttps://github.com/christophe-gouel/RECS/issues.

2 Installation

Download RECS Toolbox zip archives are available athttp://code.google.com/p/recs/.

Why is this archive 12 MB? Much of this size is due to an executable for Windows. The executable file

includes a complete Python distribution necessary to parseRECS model files.

Dependencies

• Matlab R2009b or later.

4https://raw.github.com/christophe-gouel/RECS/master/LICENSE.txt .

6

https://github.com/christophe-gouel/recs
https://github.com/christophe-gouel/RECS/issues
http://code.google.com/p/recs/
https://raw.github.com/christophe-gouel/RECS/master/LICENSE.txt


• CompEcon toolbox.5 RECS depends on the CompEcon toolbox for many programs (especially with

respect to interpolation). Please follow CompEcon installation instructions anddo not forget to create

the mex files if you want your models solved in a reasonable time.

Optional dependencies

• Path solver for Matlab.6 Path is the reference solver for mixed complementarity problems (see Sec-

tion 5). Its installation is highly recommended if difficult complementarity problems need to be

solved.

• MATLAB Optimization Toolbox. The solverfsolve can be used to solve both the equilibrium equa-

tions and the rational expectations equilibrium.

• Sundials Toolbox,7 which provides a compiled Newton-Krylov solver for solvingthe rational expec-

tations equilibrium.

• Matlab Statistics Toolbox. Useful to simulate models in which shocks follow other distributions than

the normal.

Installation instructions

1. Download the latest RECS archive athttp://code.google.com/p/recs/ and unzip it into a folder,

called hererecsfolder (avoid folder names that include spaces, even for parent folders).

2. Install the CompEcon toolbox:

(a) Download the CompEcon toolbox archive athttp://www4.ncsu.edu/~pfackler/compecon/;

(b) Unzip the archive into a folder, called herecompeconfolder;

(c) Add CompEcon to the Matlab path:

addpath(’compeconfolder/CEtools’,’compeconfolder/CEdemos’);

(d) Typemexall in Matlab prompt to create all CompEcon mex files.

3. (optional) Install other dependencies.

4. Add the RECS folder to the Matlab path:addpath(’recsfolder’).

5. On Windows, you are all set. On other architectures, you will have to install some Python packages.

see instructions below.

6. You can test your installation by running RECS demonstration files by typingrecsdemos. You can

also access RECS documentation in Matlab by typingdoc.

5http://www4.ncsu.edu/~pfackler/compecon/.
6http://pages.cs.wisc.edu/~ferris/path.html.
7https://computation.llnl.gov/casc/sundials/main.html.
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Install on Linux Python 2.7.X is required. On Debian/Ubuntu, type in a terminal:

sudo apt-get install python-yaml python-scipy python-sympy

Install on Mac In this case, you are on your own. You have to install

• Python 2.7.X.8 Python is preinstalled on Mac, but is usually too old to be useful.

• PyYaml.9

• SymPy.10

• SciPy.11

One solution might be to install a scientific Python distribution such as EPD.12

Let me know whether or not it works.

3 A RECS tutorial (model: STO1)

This tutorial example enables a quick overview of RECS features. The example is the competitive storage

model presented inWright and Williams(1982). It serves as the benchmark model from which all the other

storage models presented in this paper will be derived.

3.1 The standard rational expectations storage model

There are three risk-neutral, representative agents: a storer, a producer and a consumer, and one commodity.

The consumer is simply represented by its demand function, assumed here to be isoelastic,D(P) = Pα ,

whereα is the demand elasticity.

The storer’s activity is to transfer a commodity from one period to the next. Storing the quantitySt from

periodt to periodt+1 entails a purchasing cost,PtSt , and a storage cost,kSt , with k the unit physical cost of

storage. In addition, a shareδ of the commodity deteriorates during storage. The benefits in periodt are the

proceeds from the sale of previous stocks:(1−δ )PtSt−1. The storer follows a storage rule that arbitrages

intertemporal profit opportunities:13

St ≥ 0 ⊥ (1−δ )β Et (Pt+1)−Pt − k ≤ 0, (1)

8http://www.python.org/download/.
9http://pyyaml.org/wiki/PyYAML.

10http://sympy.org.
11http://www.scipy.org/Download.
12http://www.enthought.com/.
13Complementarity conditions in what follows are written using the “perp” notation (⊥). This means that the expressions on

either side of the sign are orthogonal. If one equation holdswith strict inequality, the other must have an equality (seeSection5 for
details on complementarity problems).
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where Et denotes the mathematical expectations operator conditional on information available at timet and

β = 1/(1+ r) is the discount factor. This equation means that inventories are null when the marginal cost

of storage is not covered by expected marginal benefits; for positive inventories, the arbitrage equation holds

with equality. So this is a situation of a stabilizing speculation, the storer buys when prices are low and when

he rationally expects that they will be higher later.

The representative producer makes his productive choice one period before bringing output to market. He

puts in production in periodt a levelHt for periodt +1, but a multiplicative disturbance affects final pro-

duction (e.g., a weather disturbance). The producer chooses the production level by solving the following

maximization of expected profit:

max
{Ht+i}

∞
i=0

Et

{

∞

∑
i=0

β i [Pt+iεt+iHt+i−1−Ψ(Ht+i)]

}

, (2)

whereΨ(Ht) is the cost of planning the productionHt andHtεt+1 is the realized production level.εt+1 is

the realization of an i.i.d. stochastic process of mean 1 exogenous to the producer. This problem gives the

following Euler equation:

β Et (Pt+1εt+1) = Ψ′ (Ht) . (3)

The marginal cost is assumed to be isoelastic and an increasing function of planned production, as increasing

production requires increasing the use of less fertile lands,Ψ′ (Ht) = hHµ
t , whereh is a scale parameter and

µ is the inverted supply elasticity.

At the beginning of each period, three predetermined variables define the state of the model:St−1, Ht−1 and

εt . These three variables can be combined in one state variable, availability (At), the sum of production, and

carry-over:

At = Ht−1εt +(1−δ )St−1. (4)

Market equilibrium can be written as

At = D(Pt)+St . (5)

From the above equations, we see that a storage model is defined by three response/control variables

{St ,Ht ,Pt}, and one state variableAt , corresponding to three equilibrium equations (1), (3), and (5), and

one transition equation (4).

3.2 Its representation in RECS

The RECS representation of this problem is very similar to its algebraic representation and is as follows

(available in filesto1.yaml):

# STO1.yaml Model definition file for the competitive storage model

# Copyright (C) 2011-2012 Christophe Gouel

# Licensed under the Expat license, see LICENSE.txt
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declarations:

states: [A]

controls: [S, H, P]

expectations: [EP, EPe]

shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS]

equations:

arbitrage:

- P+k-EP*(1-delta)/(1+r) | 0 <= S <= inf

- EPe/(1+r) = h*H^mu | -inf <= H <= inf

- A = P^elastD+S | -inf <= P <= inf

transition:

- A = (1-delta)*S(-1)+H(-1)*e

expectation:

- EP = P(1)

- EPe = P(1)*e

calibration:

parameters:

k : 0.06

delta : 0.02

r : 0.03

elastS : 0.2
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h : 1/(1+r)

mu : 1/elastS

elastD : -0.2

steady_state:

A : 1

S : 0

H : 1

P : 1

Observe that, this file, in addition to the definition of variables and equations, contains the values necessary

to calibrate the model.

3.3 Solving the storage model under Matlab

Once the Yaml file of a model has been written, which can been done using the Matlab editor, solving the

model involves following under Matlab these 4 steps:

i. Create the model structure in Matlab.

ii. Define the approximation space.

iii. Define a first-guess for the solver.

iv. Solve for the rational expectations equilibrium.

We now detail these steps for the case of our example model.

3.3.1 Create the model structure in Matlab

So far, Matlab does not know anything about the Yaml file and, even if it did, although the file is easy to

read and write for human, it is meaningless for Matlab. So we have to tell Matlab to use the Yaml file, and

convert it to a file format suitable for Matlab. This is done bythe functionrecsmodelinit, which creates

a structure containing the model, its shocks, parameters and steady-state as follows

Mu = 1;

sigma = 0.05;

model = recsmodelinit(’sto1.yaml’,struct(’Mu’,Mu,’Sigma’,sigma^2,’order’,7));
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Deterministic steady state (equal to first guess)

State variables:

1

Response variables:

0 1 1

Expectations variables:

1 1

In creating the model structure, this function call also leads to calculation of the model deterministic steady

state using as a first guess the values provided in the Yaml file.

3.3.2 Define the approximation space

Having defined the model, we need to define the domain over which it will be approximated and the precision

of the approximation. The approximation space is defined by the functionrecsinterpinit, which requires

three inputs: the number of points on the grid of approximation, the lower bound, and the upper bound. In

this case, we choose 30 points for the grid, and bounds are defined relative to the steady-state value: half of

it for the lower bound and 80% above it for the upper bound.

[interp,s] = recsinterpinit(30,model.sss/2,model.sss*1.8);

This function creates the structureinterp, which contains all the information related to the approximation

space, and the variables, which is the grid of state variables.

3.3.3 Define a first-guess for the solver

The rational expectations solver has to be initialized froma good starting point to ensure convergence to the

rational expectations equilibrium. This can be done automatically by calculating the perfect foresight solu-

tion on the grid point corresponding to the stochastic problem. Using the two structures created previously,

this is done by the functionrecsFirstGuess:

[interp,x] = recsFirstGuess(interp,model,s,model.sss,model.xss,5);

3.3.4 Solve for the rational expectations equilibrium

Now we have all the elements required to solve the model: model definition, approximation space, and first

guess. All these elements have to be passed to the functionrecsSolveREE:

[interp,x] = recsSolveREE(interp,model,s,x);
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Successive approximation

Iteration Residual

1 2.4E-001

2 4.2E-002

3 3.2E-002

4 2.7E-002

5 1.7E-002

6 6.6E-003

7 1.9E-003

8 5.1E-004

9 1.3E-004

10 3.2E-005

11 8.1E-006

12 2.0E-006

13 5.0E-007

14 1.2E-007

15 2.5E-008

16 1.6E-015

It outputsinterp, the interpolation structure that has been updated to contain the approximation of the

policy rules, andx the response variables on the grid.

3.3.5 Analyze the results

Once the model is solved, it is possible to analyze its behavior. This is done below through a stochastic

simulation that generates the main moments from the asymptotic distribution.

[~,~,~,~,stat] = recsSimul(model,interp,model.sss(ones(1000,1),:),200);

subplot(2,2,1)

xlabel(’Availability’)

ylabel(’Frequency’)

subplot(2,2,2)

xlabel(’Storage’)

ylabel(’Frequency’)

subplot(2,2,3)

xlabel(’Planned production’)

ylabel(’Frequency’)

subplot(2,2,4)

xlabel(’Price’)

ylabel(’Frequency’)

Statistics from simulated variables (excluding the first 20 observations):
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Moments

Mean Std. Dev. Skewness Kurtosis Min Max %LB %UB

1.0167 0.0518 0.0190 2.9848 0.7767 1.2596

0.0158 0.0221 1.6203 5.3890 0 0.1842 25.7104 0

1.0010 0.0081 -1.4053 4.3248 0.9543 1.0074 0 0

1.0147 0.2011 1.9070 8.1329 0.6953 3.5376 0 0

Correlation

1.0000 0.8703 -0.8793 -0.9033

0.8703 1.0000 -0.9982 -0.5825

-0.8793 -0.9982 1.0000 0.5965

-0.9033 -0.5825 0.5965 1.0000

Autocorrelation

1 2 3 4 5

0.2152 0.0438 0.0024 -0.0037 -0.0066

0.2463 0.0536 0.0035 -0.0051 -0.0083

0.2449 0.0532 0.0034 -0.0053 -0.0081

0.1188 0.0188 -0.0009 -0.0033 -0.0043
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figure

subplot(1,3,1)
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plot(s,x(:,1))

xlabel(’Availability’)

ylabel(’Storage’)

subplot(1,3,2)

plot(s,x(:,2))

xlabel(’Availability’)

ylabel(’Planned production’)

subplot(1,3,3)

plot(s,x(:,3))

xlabel(’Availability’)

ylabel(’Price’)
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4 Convention to define stochastic rational expectations problem in RECS

4.1 Rational expectation models

There are several ways to define rational expectations models. RECS adopts a controlled-process conven-

tion in which the values taken by control, or response, variables are decided at each period based on the

values of state variables. The convention follows the framework proposed inFackler(2005), and used also

in Winschel and Krätzig(2010). A model can be defined by the following three equations, where time sub-

scripts are implicit for current-period variables, and next-period variables are indicated with the+ subscript,
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while previous-period variables are indicated with the− subscript:

x(s)≤ x ≤ x(s) ⊥ f (s,x,z), where f : Rd+m+p → R
m, (6)

z = E[h(s,x,e+,s+,x+)] , whereh : Rd+m+q+d+m → R
p, (7)

s = g(s−,x−,e), whereg : Rd+m+q → R
d. (8)

Variables have been partitioned into state variables,s, response variables,x, and shocks,e. Response vari-

ables can have lower and upper bounds,x andx, which themselves can be functions of the state variables.

Expectations variables, denoted byz, are also defined, because they are necessary for solving themodel

considering the implemented algorithms.

The first equation is the equilibrium equation. It characterizes the behavior of the response variables given

state variables and expectations about the next period. Forgenerality, it is expressed as a mixed comple-

mentarity problem (MCP, if you aren’t familiar with the definition of MCP, see Section5). In cases where

response variables have no explicit lower and upper bounds,or have infinite ones, equation (6) simplifies to

a traditional equation:

0= f (s,x,z). (9)

The second equation (7) defines the expectations. The last equation, (8), is the state transition equation,

which defines how state variables are updated based on past responses, past states and contemporaneous

shocks.

4.2 Restrictions imposed by the RECS convention

Distinction between state variables and other variables In many models, it is possible to simplify the

state transition equations = g(s−,x−,e). For example, it is possible to haves = e if some shocks are not

serially correlated, ors = x− if the state is just a previous period response variables. Inthe latter case, one

might be tempted to reduce the number of variables in the model by introducing the lag response variable

directly in the equilibrium equation. This should not be done. A state variable corresponding to the lagged

response variable or to the realized shock has to be created.

One consequence is that lags can only appear in state transition equations, (8), and in no other equations.

Lags and leads RECS only deals with lags and leads of one period. For a model with lags/leads of more

periods, additional variables have to be included to reducethe number of periods.

In addition, leads can only appear in the equations defining expectations, (7). So no leads or lags should

ever appear in the equilibrium equations.

Timing convention In RECS, the timing of each variable reflects when that variable is decided/determined.

In particular, the RECS convention implies that state variables are determined by a transition equation that
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includes shocks and so are always contemporaneous to shocks, even when shocks do not actually play a role

in the transition equation. This convention implies that the timing of each variable depends on the way the

model is written.

One illustration of the consequences of this convention is the timing of planned production in the competitive

storage model presented as a tutorial (Section3). Planned production,Ht , will only lead to actual production

in t + 1 and will be subject to shocks,εt+1, so it is tempting to use at + 1 indexing. However, since it is

determined int based on expectations of periodt +1 price, it should be indexedt.

4.3 An example

As an example, consider the competitive storage model presented in tutorial. It is composed of four equa-

tions:

St : St ≥ 0 ⊥ (1−δ )β Et (Pt+1)−Pt − k ≤ 0, (10)

Ht : β Et (Pt+1εt+1) = Ψ′ (Ht) , (11)

Pt : At = D(Pt)+St , (12)

At : At = Ht−1εt +(1−δ )St−1, (13)

whereS, H, P, andA respectively represent storage, planned production, price and availability.

There are three response variables:xt ≡ {St ,Ht ,Pt}, and three corresponding equilibrium equations (10)–

(12). These equations include two terms corresponding to expectations about periodt + 1: zt ≡

{Et (Pt+1) ,Et (Pt+1εt+1)}.

There is one state variable, availability:st ≡ {At}, which is associated to the transition equation (13). It

would have been perfectly legitimate to define the model withmore state variables, such as production and

stocks, since availability is the sum of both, and this wouldnot prevent the solver from finding the solution,

however, it is generally not a good idea. Since the solution methods implemented in RECS suffer from the

curse of dimensionality, it is important where possible to combine predetermined variables to reduce the

number of state variables.

Corresponding to RECS convention, this model is defined by the following three functions{ f ,h,g}:

f ≡











Pt + k− z1,t (1−δ )β
β z2,t −Ψ′ (Ht)

At −D(Pt)−St











(14)

h ≡

{

Pt+1

Pt+1εt+1

}

(15)

g ≡ {Ht−1εt +(1−δ )St−1} (16)
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4.4 Solving a rational expectations model

What makes solving a rational expectations model complicated is that the equation (7), defining the expecta-

tions, is not a traditional algebraic equation. It is an equation that expresses the consistency between agents’

expectations, their information set, and realized outcomes.

One way to bring this problem back to a traditional equation is to find an approximation or an algebraic

representation of the expectations terms. For example, if it is possible to find an approximation of the

relationship between expectations and current-period state variables (i.e., the parameterized expectations

approach inden Haan and Marcet, 1990), the equilibrium equation can be simplified to

x(s)≤ x ≤ x(s) ⊥ f (s,x,Z (s,cz)) , (17)

whereZ (s,cz) approximates the expectationsz as a function ofs, andcz are the coefficients characterizing

this approximation. Using this approximation, equation (17) can be solved forx with any MCP solvers. So

the crux of solving rational expectations model is to find a good way to approximate the expectations.

The RECS solver implements various methods to solve rational expectations models and to find approxima-

tion for the expectations terms. See Section11 for a sketch of the algorithm.

5 Introduction to mixed complementarity problems

To be able to reliably solve models with occasionally binding constraints, all equilibrium equations should

be represented in RECS as mixed complementarity problems (MCP). Here, we present a short introduction

to this kind of problems. For more information, seeRutherford(1995), andFerris and Pang(1997).

5.1 Definition of a mixed complementarity problem

Complementarity problems can be seen as extensions of square systems of nonlinear equations that incorpo-

rate a mixture of equations and inequalities. Many economicproblems can be expressed as complementarity

problems. An MCP is defined as follows (adapted fromMunson, 2002):

Definition. (Mixed Complementarity Problem) Given a continuously differentiable functionF : Rn → R
n,

and lower and upper bounds

l ∈ {R∪{−∞}}n,

u ∈ {R∪{+∞}}n.

The mixed complementarity probleml ≤ x ≤ u ⊥ F(x) is to find ax ∈ R
n such that one of the following
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holds for eachi ∈ {1, . . . ,n} :

Fi(x) = 0 andli ≤ xi ≤ ui, (18)

Fi(x) > 0 andxi = li, (19)

Fi(x) < 0 andxi = ui. (20)

To summarize, an MCP problem associates each variable,xi, to a lower bound,li, an upper bound,ui, and

an equation,Fi(x). The solution is such that ifxi is between its bounds thenFi(x) = 0. If xi is equal to its

lower (upper) bound thenFi(x) is positive (negative).

This format encompasses several cases. In particular, it iseasy to see that with infinite lower and upper

bounds, solving an MCP problem is equivalent to solving a square system of nonlinear equations:

−∞ ≤ x ≤+∞ ⊥ F(x) ⇔ F(x) = 0.

5.2 A simple example of mixed complementarity (model: CS1)

We consider here the traditional consumption/saving problem with borrowing constraint (Deaton, 1991).

This problem is solved as a demonstration, see problem CS1 inthe section Demos in the RECS documenta-

tion. A consumer with utility∑∞
t=0 u(Ct)/(1+δ )t has a stochastic income,Yt and has to choose each period

how much to consume and how much to save. He is prevented from borrowing, but can save at the rater.

Without the borrowing constraint, his problem consists of choosing its consumptionCt such that it satisfies

the standard Euler equation:

u′ (Ct) =
1+ r
1+δ

Et
[

u′ (Ct+1)
]

.

The borrowing constraint implies the inequalityCt ≤ Xt , whereXt is the cash on hand available in periodt

and defined as

Xt = (1+ r) (Xt−1−Ct−1)+Yt .

When the constraint is binding (i.e.,Ct = Xt), the Euler equation no longer holds. The consumer would like

to borrow but cannot, so its marginal utility of immediate consumption is higher than its discounted marginal

utility over future consumption:

u′ (Ct)≥
1+ r
1+δ

Et
[

u′ (Ct+1)
]

.

Since the Euler equation holds when consumption is not constrained, this behavior can be summarized by

the following complementarity equation

Ct ≤ Xt ⊥
1+ r
1+δ

Et
[

u′ (Ct+1)
]

≤ u′ (Ct) .
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5.3 When do complementarity problems arise?

In addition to encompassing nonlinear systems of equations, complementarity problems appear naturally in

economics. Although not exhaustive, we present here few situations that lead to complementarity problems:

• Karush-Kuhn-Tucker conditions of a constrained nonlinear program. The first-order conditions of

the following nonlinear programming problem minx f (x) subject tog(x) ≤ 0 andl ≤ x ≤ u can be

written as a system of complementarity equations:

l ≤ x ≤ u ⊥ f ′(x)−λg′(x), (21)

λ ≥ 0 ⊥ −g(x) ≥ 0, (22)

whereλ is the Lagrange multiplier on the first inequality constraint.

• Natural representation ofregime-switching behavior. Let us consider two examples.

– A variabley that is determined as a function of another variablex as long asy is superior to a

lower bounda. Put simply:y =max[a,λ (x)]. In MCP, we would write this asy ≥ a ⊥ y ≥ λ (x).

– A system of intervention prices in which a public stock is accumulated when prices decrease

below the intervention price and sold when they exceed the intervention price (see also the

demonstration problem in Section12.1) can be represented asS ≥ 0⊥ P−PI ≥ 0, whereS, P

andPI, respectively, are the public storage, the price and the intervention price.

• A Walrasian equilibrium can be formulated as a complementarity problem (Mathiesen, 1987) by

associating three sets of variables to three sets of inequalities: non-negative levels of activity are as-

sociated to zero-profit conditions, non-negative prices are associated to market clearance, and income

levels are associated to income balance.

5.4 Conventions of notations adopted for representing complementarity problems

To solve complementarity problems, RECS uses several solvers. The convention adopted in most MCP

solvers and used by RECS is the one used above in the MCP definition: superior or equal inequalities are

associated with the lower bounds and inferior or equal inequalities are associated with the upper bounds. So,

when defining your model, take care to respect this convention.

In addition, in Yaml files inequalities should not be writtenexplicitly. As an example, let’s consider these 5
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MCP equations:

F(x) = 0, (23)

y ≥ a ⊥ G(y)≥ 0, (24)

z ≤ b ⊥ H (z)≤ 0, (25)

a ≤ k ≤ b ⊥ J (k) , (26)

l ≥ a ⊥ M (l)≤ 0. (27)

They would be written in a Yaml file as

- F(x)=0 | -inf<=x<=inf

- G(y) | a<=y<=inf

- H(z) | -inf<=z<=b

- J(k) | a<=k<=b

- -M(l) | a<=l<=inf

Note that it is necessary to associate lower and upper boundswith every variables, and the “perp” symbol

(⊥) is substituted by the vertical bar (|), which is much easier to find on a keyboard. So if there are no finite

bounds, one has to associate infinite bounds, as for equation(23). The last equation, (27), does not respect

the convention that associates lower bounds on variables with superior or equal inequality for equations, so,

when writing it in the Yaml file, the sign of the equation needsto be reversed.

5.5 Example: MCP representation of a price-band program (model: STO4)

Price-band policies constitute an excellent application for MCP modeling. Although this policy is simple to

express in words, it needs some reformulation and attentionto be expressed as an MCP problem.

This problem is analyzed in depth inMiranda and Helmberger(1988). This model is an extension of the

competitive storage model in which government intervenes by defending a price band through purchase and

sale of public storage. Here, we present an extension ofMiranda and Helmberger(1988) in which there is a

capacity constraint on the public stock level.

With a capacity constraint on public stock,S̄G, the behavior of a price-band obeys some simple principles.

When the price is above the floor price,PF, there is no accumulation of public stock,SG:

Pt > PF ⇒ ∆SG
t ≤ 0. (28)

Likewise, when the price is below the ceiling price,PC, government does not sell stock:

Pt < PC ⇒ ∆SG
t ≥ 0. (29)
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When the capacity constraint is reached, the floor price is not defended and the price can decrease below it:

Pt < PF ⇒ ∆SG
t = S̄G −SG

t−1. (30)

Finally, the ceiling price is not defended when the public stock is exhausted:

Pt > PC ⇒ ∆SG
t =−SG

t−1. (31)

To express these four conditions as complementarity equations, we need to introduce two variables:∆SG+

and∆SG−, which refer to increases and decreases in public stock. Both are positive and bounded from above.

The increase in public stock is bounded from above by the remaining storage capacity, and the decrease in

public stock by the level of existing stocks. To defend the price-band, public stocks are managed by the four

conditions (28)–(31), which can be restated as two mixed complementarity equations:

0≤ ∆SG+
t ≤ S̄G−SG

t−1 ⊥ Pt −PF, (32)

0≤ ∆SG−
t ≤ SG

t−1 ⊥ PC−Pt. (33)

Equation (32) means that public stocks increase to prevent the price fromdecreasing below the floor price,

PF. The floor is defended until public stocks reach the limitS̄G. Equation (33) governs the decrease in public

stocks. They decrease to prevent the price from rising abovethe ceiling price,PC. The release of stocks is

constrained by the existing level of stocksSG
t−1.

Market equilibrium and public stock transition are then defined by14

At = D(Pt)+St +∆SG+
t −∆SG−

t , (34)

SG
t = SG

t−1+∆SG+
t −∆SG−

t . (35)

The recursive equilibrium under a price-band program is defined by the equilibrium equations (1), (3)

and (32)–(34), and the transition equations (4) and (35).

6 Setting Up a Rational Expectations Problem

6.1 Structure of RECS model files

6.1.1 Structure of a rational expectation models

Before starting to write the model file, you need to organize your equations as described in Section4. This

means that you need to identify and separate in your model thefollowing three group of equations:

Equilibrium equations
x(s) ≤ x ≤ x(s) ⊥ f (s,x,z). (36)

14Note that here, for simplicity, this model does not assume any depreciation during storage.
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Expectations definition
z = E[h(s,x,e+,s+,x+)] . (37)

Transition equations
s = g(s−,x−,e). (38)

When defining your model, it is important to try to minimize the number of state variables. Currently, RECS

relies for interpolation on grids constructed with tensor products, so the dimension of the problem increases

exponentially with the number of state variables. This implies that RECS should be used only to solve small-

scale models: more than three or four state variables may make the problems too large to handle. One way

of reducing the problem size is, whenever possible (as in thecompetitive storage model), to sum together

the predetermined variables that can be summed.

6.1.2 Structure of RECS model files

An RECS model can be written in a way that is quite similar to the original mathematical notations (as is

proposed in most algebraic modeling languages). The model file that must be created is called a Yaml file

(because it is written in YAML15 and has the.yaml extension). A Yaml file is easily readable by humans,

but not by Matlab. So the file needs to be processed for Matlab to be able to read it. This is done by the

functionrecsmodelinit, which uses a Python preprocessor,dolo-recs, to do the job.

RECS Yaml files require three basic components, written successively:

1. declarations – The blockdeclarations contains the declaration of all the variables, shocks and

parameters that are used in the model. Inside this block, there are five sub-blocks:states, controls,

expectations, shocks, andparameters with corresponding elements declarations.

2. equations – The blockequations declares the model’s equations.

3. calibration – The blockcalibration provides numerical values for parameters and a first-guess

for the deterministic steady-state.

Yaml file structure To illustrate a complete Yaml file let us consider how to writethe competitive storage

model in Yaml (available in filesto1.yaml):

# STO1.yaml Model definition file for the competitive storage model

# Copyright (C) 2011-2012 Christophe Gouel

# Licensed under the Expat license, see LICENSE.txt

declarations:

15http://yaml.org.
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states: [A]

controls: [S, H, P]

expectations: [EP, EPe]

shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS]

equations:

arbitrage:

- P+k-EP*(1-delta)/(1+r) | 0 <= S <= inf

- EPe/(1+r) = h*H^mu | -inf <= H <= inf

- A = P^elastD+S | -inf <= P <= inf

transition:

- A = (1-delta)*S(-1)+H(-1)*e

expectation:

- EP = P(1)

- EPe = P(1)*e

calibration:

parameters:

k : 0.06

delta : 0.02

r : 0.03

elastS : 0.2

h : 1/(1+r)

mu : 1/elastS
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elastD : -0.2

steady_state:

A : 1

S : 0

H : 1

P : 1

Yaml files can be written with any text editor, including Matlab editor.

Yaml syntax conventions For the file to be readable, it is necessary to respect some syntax conventions:

• Association equilibrium equations/control variables/bounds: Each equilibrium equation must be

associated with a control variable. It really matters for equations with complementarity constraints. If

the equation is not a complementarity equation, the preciseassociation with a control variable does

not matter. The equation and its associated variable are separated by the symbol |. Control variables

must be associated with bounds, which can be infinite.

• Indentation: Inside each block elements of the same scope have to be indented using the same

number of spaces (do not use tabs). For the above example, inside thedeclarations block,states,

controls, expectations, shocks, andparameters are indented to the same level.

• Each equation starts with a dash and a space (“- ”), not to be confused with a minus sign. To avoid

confusion, it is possible instead to use two points and a space (“.. ”), or two dashes and a space

(“-- ”).

• Comments: Comments are introduced by the character#.

• Lead/Lag: Lead variables are indicatedX(1) and lag variablesX(-1).

• Timing convention:

– Transition equations are written by defining the new state variable at current time as a function

of lagged response and state variables:st = g(st−1,xt−1,et).

– Even if expectations are defined byzt = Et [h(st ,xt ,et+1,st+1,xt+1)], when writing them in a

Yaml file the shocks are not indicated with a lead. This can be seen in the example above where

Pt+1εt+1 is written asEPe = P(1)*e.

• Do not uselambda as a variable/parameter name, this is a restricted word.

• Write equations in the same order as the order of variables declaration.

• Yaml files are case sensitive.
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6.2 Defining the model structure

Now the model should be written in a Yaml file, however Matlab does not know anything about the Yaml

file and, even if it did, although the file is easy for humans to read and write, it means nothing to Matlab. So

we have to tell Matlab to use the Yaml file and to convert it to a format suitable for Matlab. Also, we have

to provide additional information about the structure of shocks.

6.2.1 Convert the Yaml file and create the model structure

This task is done by the functionrecsmodelinit that calls a Python preprocessor, to convert the model

described in a Yaml file to a file readable by Matlab and RECS programs. In the conversion, it calculates

the analytic representation of all partial derivatives.

A simple call torecsmodelinit takes the following form:

model = recsmodelinit(’file.yaml’);

This call does two things:

• It convertsfile.yaml to filemodel.m, which contains the model definition in a Matlab readable

form but also all the derivatives of the equations, plus someadditional information such as the param-

eters values for calibration or a first guess for the steady state.

• It creates in Matlab workspace the structuremodel with two fields: the function name,func equal to

@filemodel, and the parameters values,params, if these latter have been provided in the Yaml file.

6.2.2 Shocks with a Gaussian distribution

If your shocks follow a Gaussian distribution, you can also define their structure when calling

recsmodelinit. It requires defining a structure with three fields characterizing the distribution mean, vari-

ance/covariance matrix, and order of approximation, with the call

model = recsmodelinit(’file.yaml’,...

struct(’Mu’,Mu,’Sigma’,Sigma,’order’,order));

HereMu is a size-q vector of the distribution mean,Sigma is a q-by-q positive definite variance/covariance

matrix, andorder is a scalar or a size-q vector equal to the number of nodes for each shock variable.

This function call creates at least three additional fields in the model structure:e a matrix of the nodes for

the shocks discretization;w the vector of associated probabilities; andfunrand an anonymous function that

can generate random numbers corresponding to the underlying distribution.

If a first-guess for the deterministic steady state has been provided,recsmodelinit attempts also to find

the deterministic steady state of the problem. If it finds it,it is displayed on screen and output as three fields

in the model structure:sss, xss, andzss for, respectively, the steady-state values of state, response and

expectations variables.
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6.2.3 An example

Let us consider the example of the competitive storage model. The complete function call in sto1.m is:

Mu = 1;

sigma = 0.05;

model = recsmodelinit(’sto1.yaml’,struct(’Mu’,Mu,’Sigma’,sigma^2,’order’,7));

Deterministic steady state (equal to first guess)

State variables:

1

Response variables:

0 1 1

Expectations variables:

1 1

It is important to notice that variables names are not displayed here and will not be displayed in subsequent

steps. Variable names are used only in the symbolic model definition in the Yaml file. Once the Yaml file

has been processed, variables are merely ordered based on their original order in the Yaml file. In this case,

it means that, in the steady-state results above, for the response variables the first number is storage, the

second is planned production, and the third is price.

The model structure has the following fields:

disp(model)

func: @sto1model

params: [0.0600 0.0200 0.0300 0.9709 5 -0.2000 0.2000]

e: [7x1 double]

w: [7x1 double]

funrand: @(nrep)Mu(ones(nrep,1),:)+randn(nrep,q)*R

sss: 1

xss: [0 1 1]

zss: [1 1.0000]
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6.3 Defining the interpolation structure

6.3.1 Define the interpolation structure

Following the previous two steps to completely define the problem, it remains only to define the domain

over which it will be approximated and the precision of the approximation.

Create the interpolation structure This task is done by the functionrecsinterpinit, which requires

at least three inputs: the number of points on the grid of approximation, the lower bounds and the upper

bounds of the grid.

The structure of the call torecsinterpinit is then

[interp,s] = recsinterpinit(n,smin,smax,method);

The inputs are as follows:n designates the order of approximation (if it is a scalar, thesame order is applied

for all dimensions),smin andsmax are size-d vectors of left and right endpoints of the state space, and the

(optional) stringmethod defines the interpolation method, either spline (’spli’, default), or Chebyshev

polynomials (’cheb’).

This function call returns two variables: the structureinterp, which defines the interpolation structure, and

the matrixs, which represents the state variables on the grid.

6.3.2 An example

We now define the interpolation structure for the competitive storage example. Using the model structure

defined in Section6.2, we choose bounds for availability 50% below and 80% above the steady-state value

(model.sss). Using 30 nodes and spline, the function call is:

[interp,s] = recsinterpinit(30,model.sss/2,model.sss*1.8);

The interpolation structure has the following fields:

disp(interp)

fspace: [1x1 struct]

Phi: [1x1 struct]

7 Steady state

In contrast to pertubation approaches, the deterministic steady state does not play an important role in finding

the rational expectations equilibrium with collocation methods, and thus with RECS. However, finding the

deterministic steady state proved very useful in the overall model building for

28



• Calibration;

• Definition of the approximation space;

• Calculation of a first guess using the corresponding perfectforesight problem;

• Checking model structure.

7.1 Steady state definition

The deterministic steady state is the state reached in the absence of shocks and ignoring future shocks.

Following the convention adopted in RECS (see Section4), the deterministic steady state is the set{s,x,z}

of state, response and expectations variables that solves the following system of equations

x(s) ≤ x ≤ x(s) ⊥ f (s,x,z), (39)

z = h(s,x,E(e) ,s,x), (40)

s = g(s,x,E(e)). (41)

7.2 Finding the steady state with RECS

Automatically when initializing model structure When writing a model file (see Section6.1, it is possi-

ble, at the end of the Yaml file in thecalibration block, to define an initial guess for finding the steady

state. When the model structure is created byrecsmodelinit, if the definition of the shocks is provided

to recsmodelinit, a Newton-type solver will attempt to find the steady state starting from the initial guess

provided in the model file. If a steady state is found, it is displayed in Matlab command window.

Manually Otherwise, the steady state can be found manually by feedingthe functionrecsSS with the

model and an initial guess for the steady state.

Both approaches rely on a Newton-type solver to find the steady state.

7.3 Uses of the deterministic steady state with RECS

Calibration Compared to the stochastic rational expectations problem,the deterministic steady state is

easy to find. It does not even require the definition of an interpolation structure. Since in practice it is often

close to the long-run average values of the stochastic problem, the steady state is useful for calibrating the

model so that, on the asymptotic distribution, the model canreproduce the desired long-run average (see

Section12.2).

Define the approximation space As the values of the state variables in the stochastic problem are often

located around the deterministic steady state, the steady state serves as a good reference point around which

the state space can be define. See Section6.3for more.
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First guess calculation for the stochastic problem The rational expectations solver requires a good first

guess to ensure convergence to the solution. RECS proposes to provide a first guess by calculating the

perfect foresight problem corresponding to the stochasticproblem. The perfect foresight problem assumes

that the model converges in the long-run to its deterministic steady state. See next section for more.

Checking model structure Before solving the stochastic problem, even if there are no motives for using

the steady state, it is good practice to find it in order to ensure that the model written in the Yaml file behaves

as expected in this simple case.

8 First guess for the stochastic problem

The solution methods used in RECS to find the rational expectations equilibrium of a problem all rely on

nonlinear equation solvers that allow convergence only if the starting point is not too far from the solution.

Hence, the importance of a good first guess.

8.1 The perfect foresight problem as a first guess

RECS can attempt to calculate for you a first guess that is goodin most situations. It does it by calculating

the perfect foresight solution of the deterministic problem in which the shocks in the stochastic problem

have been substituted by their expectations:

x(s) ≤ x ≤ x(s) ⊥ f (s,x,z), (42)

z = h(s,x,E(e) ,s+,x+), (43)

s = g(s−,x−,E(e)). (44)

The solver for perfect foresight problems (functionrecsSolveDeterministicPb) assumes that the prob-

lem converges to its deterministic steady state after T periods (by default T=50). The perfect foresight

problem is solved for each grid point and the resultant behavior is used as a first guess for the stochastic

problem. This is done by the following call:

[interp,x] = recsFirstGuess(interp,model,s,sss,xss);

This function updates the interpolation structure,interp, with the solution of the perfect foresight problem

and outputs the value of the response variables on the grid,x.

Solving time As the perfect foresight problem is solved for each point of the grid and for T periods, this

step can take some time. In many cases, it should be expected that it may take more time to find a first guess

through the perfect foresight solution than to solve the stochastic problem from this first guess.
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How good is this first guess? It depends on the model and the solution horizon. For most models, if the

state space has been properly defined (i.e., neither too small nor too large), this first guess is good enough to

allow the stochastic solver to converge.

The quality of the perfect foresight solution as a first guessdepends also on the model’s nonlinearity. For

models with behavior close to linear, the first guess can be extremely good. For example, in the stochastic

growth model the first guess leads to an initial deviation from rational expectations of 1E-5. So after a few

iterations, the solver converges to the solution. However,in the stochastic growth model with irreversible

investment, which is much more nonlinear, the residual whenstarting the stochastic solver from the first

guess is 1E-2. This is sufficient to achieve convergence, butit is still far from the true solution.

8.2 User-provided first guess

It is not necessary to use the deterministic problem as a firstguess. A first guess can be provided directly by

the user. In this case there is no need to call a function, but only to define a n-by-m matrixx that provides

the values of the m response variables for the n points on the grid of state variable. The matrixx should then

be supplied torecsSolveREE (see next section for more information).

9 Solve the rational expectations problem

9.1 The functionrecsSolveREE

Once the model, the interpolation structure and a first guesssolution have been defined, it is possible

to attempt to find the rational expectations equilibrium of the model. This is achieved by the function

recsSolveREE.

This is done by the following call

[interp,x] = recsSolveREE(interp,model,s,x,options);

This function call returns the interpolation structureinterp with new or updated fields. Following a suc-

cessful run ofrecsSolveREE, the fieldscx andcz are created or updated ininterp. They represent the

response and expectations variables interpolation coefficients, respectively. These coefficients are sufficient

to simulate the model. The second output is the matrixx of response variables on the grid.

The options structure defines the methods used to find the rational expectations equilibrium, as well as

other aspects of the solution process.

9.2 An example

First guess from the corresponding deterministic problem If the first guess is generated by the function

recsFirstGuess, interp already includes the fields of coefficientscx andcz corresponding to this first
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guess, so it is not necessary to supply the value of the response variables on the grid. For the competitive

storage model, finding the first guess and solving the model involves the following call:

[interp,x] = recsFirstGuess(interp,model,s,model.sss,model.xss,5);

[interp,x] = recsSolveREE(interp,model,s);

Successive approximation

Iteration Residual

1 2.4E-001

2 4.2E-002

3 3.2E-002

4 2.7E-002

5 1.7E-002

6 6.6E-003

7 1.9E-003

8 5.1E-004

9 1.3E-004

10 3.2E-005

11 8.1E-006

12 2.0E-006

13 5.0E-007

14 1.2E-007

15 2.5E-008

16 1.7E-015

User-provided first guess If the first guess is provided by the user, there is no need to include the fields

cx or cz in interp. The user needs only to provide an n-by-m matrixx that contains the values of the m

response variables for the n points on the grid of state variable.

Our example is based on a simple first guess: storage is zero below steady-state availability and 70% of

availability in excess of steady state, planned productionis equal to its steady-state value and price is given

by the inverse demand function assuming that demand is equalto availability

elastD = model.params(6);

x = [max(0,0.7*s-model.sss) repmat(model.xss(2),size(s,1),1) s.^(1/elastD)];

[interp,x] = recsSolveREE(interp,model,s,x);

Successive approximation

Iteration Residual

1 2.1E+000

2 8.6E-001

3 3.6E-001
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4 1.5E-001

5 5.4E-002

6 1.8E-002

7 5.0E-003

8 1.3E-003

9 3.4E-004

10 8.5E-005

11 2.1E-005

12 5.3E-006

13 1.3E-006

14 3.2E-007

15 7.9E-008

16 2.5E-015

With this simple model, even a naive first guess allows the solver to find the solution, however it significantly

decreases the precision of the first iteration.

10 Stochastic simulations

10.1 Running a simulation

Once the rational expectations equilibrium has been found,it is possible to simulate the model using the

functionrecsSimul with the following call:

[ssim,xsim] = recsSimul(model,interp,s0,nper);

wheremodel andinterp have been defined previously as the model and the interpolation structure.s0 is

the initial state andnper is the number of simulation periods.

s0 is not necessarily a unique vector of the state variables. Itis possible to provide a matrix of initial states

on the basis of which simulations can be run fornper periods. Even starting from a unique state, using this

feature will speed up the simulations.

Shocks The shocks used in the simulation can be provided as the fifth input to the function:

[ssim,xsim] = recsSimul(model,interp,s0,nper,shocks);

However, by default,recsSimul uses the functionfunrand defined in the model structure (see Section6.2)

to draw random shocks. If this function is not provided random draws are made from the shock discretization,

using the associated probabilities.

To reproduce previously run results, it is necessary to reset the random number generator using the Matlab

functionreset.
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Asymptotic statistics If in the options the fieldstat is set to 1, or if five arguments are required as

output of recsSimul, then some statistics over the asymptotic distribution arecalculated. The first 20

observations are discarded. The statistics calculated arethe mean, standard deviation, skewness, kurtosis,

minimum, maximum, percentage of time spent at the lower and upper bounds, correlation matrix, and the

five first-order autocorrelation coefficients. In addition,recsSimul draws the histograms of the variables

distribution are drawn.

These statistics are available as a structure in the fifth output ofrecsSimul:

[ssim,xsim,esim,fsim,stat] = recsSimul(model,interp,s0,nper);

Since RECS does not retain the variable names, when displaying the statistics, the variables are organized

as follows: first state variables, followed by response variables, both of which follow the order of their

definition in the Yaml file.

10.2 Choice of simulation techniques

There are two main approaches to simulate the model once an approximated rational expectations equilib-

rium has been found.

Using approximated decision rule The first, and most common, method consists of simulating themodel

by applying the approximated decision rules recursively.

Starting from a knowns1, for t = 1 : T

xt = X (st ,cx) (45)

Draw a shock realizationet+1 from its distribution and update the state variable:

st+1 = g(st ,xt ,et+1) (46)

This is the default simulation method. It is chosen in the options structure by setting the fieldsimulmethod

to interpolation.

Solve equilibrium equations using approximated expectations The second main method uses the func-

tion being approximated (decisions rules, conditional expectations, or expectations function) to approximate

next-period expectations and solve the equilibrium equations to find the current decisions (in a time-iteration

approach). For example, if approximated expectations (z ≈ Z (s,cz)) are used to replace conditional expec-

tations in the equilibrium equation, the algorithm runs as follows:

Starting from a knowns1, for t = 1 : T , find xt by solving the following MCP equation using as first guess

xt = X (st ,cx)

x(st)≤ xt ≤ x(st) ⊥ f (st ,xt ,Z (st ,cz)) (47)
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Draw a shock realizationet+1 from its distribution and update the state variable:

st+1 = g(st ,xt ,et+1) (48)

This simulation method is chosen in the options structure bysetting the fieldsimulmethod to solve.

The two approaches differ in their speed and precision. Simulating a model through recursive application of

approximated decision rules is very fast because it does notrequire solving nonlinear equations. The second

approach is slower because each period requires that a system of complementarity equations be solved.

However, its level of precision is much higher, because the approximation is used only for the expectations

of next-period conditions. The precision gain is even more important when decision rules have kinks, which

makes them difficult to approximate.Wright and Williams(1984), who first proposed the parameterized

expectations algorithm, suggest using the second method tosimulate the storage model.

When does this distinction matter? Most of the time, the default approach of recursively applying the

approximated decision rules should be used. Simulating themodel by solving the equations should be

considered in the following two cases:

• If the model has been solved with low precision, using the approximated decision rules can lead to

large errors, while simulating the model by solving the equilibrium equations using only the approxi-

mation in expectations will yield a more precise solution. This applies to the following example taken

from Section12.1: a price-floor policy backed by public storage. If the problem is approximated by

a spline with a small grid of 6 points, it is not possible to expect a good approximation of the highly

nonlinear storage rules. However, if the approximation is used only in expectations, it yields a very

precise solution:
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• If you are interested in the percentage of time spent in various regimes, solving the equilibrium equa-

tions is the only way to achieve a precise estimate. Even whensolved with high precision, a simu-

lation using the approximated decision rules provides limited precision regarding the percentage of

time spent in each regime. Indeed, approximations using spline or Chebyshev polynomials fluctuate

around the exact value between collocation nodes. So between two nodes at which the model should

be at a bound, the approximated decision rule can yield a result very close to the bound without ac-

tually satisfying it. Below are the moments obtained from simulating the model in Section12.1with

both methods and with decision rules approximated on 30 nodes. The moments are quite similar, but

the approximated decision rules widely underestimate the time spent at the bounds:

Long-run statistics from equilibrium equations solve

Statistics from simulated variables (excluding the first 20 observations):

Moments

Mean Std. Dev. Skewness Kurtosis Min Max %LB %UB

1.2349 0.1199 -0.2424 2.3425 0.8457 1.5736

0.0007 0.0050 9.7021 115.6033 0 0.1133 96.4720 0

1.0026 0.0049 -0.7963 6.7106 0.9667 1.0160 0 0

1.0149 0.0523 3.5551 65.9633 0.7463 2.3121 0 0

0.2369 0.1141 -0.3280 2.0886 0 0.4000 2.3400 8.0010

Correlation

1.0000 0.2742 -0.8393 -0.4939 0.9947

0.2742 1.0000 -0.4928 -0.4930 0.1947

-0.8393 -0.4928 1.0000 0.6688 -0.7992

-0.4939 -0.4930 0.6688 1.0000 -0.4127

0.9947 0.1947 -0.7992 -0.4127 1.0000

Autocorrelation

1 2 3 4 5

0.8617 0.7473 0.6491 0.5629 0.4876

0.1079 0.0352 0.0165 0.0054 -0.0009

0.6710 0.4936 0.3824 0.3068 0.2551

Inf Inf Inf NaN -Inf

0.8712 0.7592 0.6618 0.5751 0.4981

Long-run statistics if simulated with approximated decision rules

Statistics from simulated variables (excluding the first 20 observations):

Moments
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Mean Std. Dev. Skewness Kurtosis Min Max %LB %UB

1.2346 0.1200 -0.2457 2.3441 0.8458 1.5726

0.0008 0.0050 9.3978 112.0988 0 0.1125 48.8260 0

1.0026 0.0049 -0.7267 6.6960 0.9669 1.0163 0 0

1.0144 0.0511 4.3173 74.2896 0.7466 2.3105 0 0

0.2364 0.1140 -0.3384 2.0941 0 0.4000 1.6080 4.5290

Correlation

1.0000 0.3114 -0.8411 -0.4970 0.9948

0.3114 1.0000 -0.5348 -0.5403 0.2300

-0.8411 -0.5348 1.0000 0.6827 -0.7998

-0.4970 -0.5403 0.6827 1.0000 -0.4164

0.9948 0.2300 -0.7998 -0.4164 1.0000

Autocorrelation

1 2 3 4 5

0.8620 0.7476 0.6495 0.5633 0.4880

0.1818 0.0850 0.0502 0.0315 0.0214

0.6713 0.4938 0.3817 0.3067 0.2555

0.2894 0.1596 0.1008 0.0676 0.0524

0.8716 0.7597 0.6624 0.5757 0.4986

11 Sketch of the numerical algorithm

The numerical algorithms used in RECS are inspired byMiranda and Fackler(2002), Fackler(2005) and

Miranda and Glauber(1995). These are all projection methods with a collocation approach. Several meth-

ods are implemented, but we will only present here the default one: the approximation of response variables

behavior in a time iteration approach. As already explained, a model is characterized by three equations:

x(s) ≤ x ≤ x(s) ⊥ f (s,x,z), (49)

z = E[h(s,x,e+,s+,x+)] , (50)

s = g(s−,x−,e). (51)

One way to solve this problem is to find a function that is a goodapproximation for the behavior of the
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response variables. We consider an approximation of response variables,

x ≈ X (s,cx) , (52)

wherecx are the parameters defining the spline or Chebyshev approximation. To calculate this approxima-

tion, we discretize the state space, and the approximation has to hold exactly for all points on the grid.

The expectations operator in equation (50) is approximated by a Gaussian quadrature, which defines a set

of pairs{el,wl} in which el represents a possible realization of shocks andwl is the associated probability.

Using this discretization, and equations (50)–(52), we can express the equilibrium equation (49) as

x(s)≤ x ≤ x(s) ⊥ f

(

s,x,∑
l

wlh(s,x,el ,g(s,x,el) ,X (g(s,x,el) ,cx))

)

. (53)

For a given approximation,cx, and a givens, equation (53) is a function ofx and can be solved using a mixed

complementarity solver.

Once all the above elements are defined, we can proceed to the algorithm, which runs as follows:

1. Initialize the approximation,c(0)x , based on a first-guess,x(0).

2. For each point of the grid of state variables,si, solve forxi equation (53) using an MCP solver:

x(si)≤ xi ≤ x(si) ⊥ f

(

si,xi,∑
l

wlh
(

si,xi,el,g(si,xi,el) ,X
(

g(si,xi,el) ,c
(n)
x

))

)

. (54)

3. Update the approximation using the new values of responsevariables,x = X

(

s,c(n+1)
x

)

.

4. If ‖c(n+1)
x − c(n)x ‖2 ≥ ε , whereε is the precision we want to achieve, then incrementn to n+1 and go

to step2.

Once the rational expectations equilibrium is identified, the approximation of the decision rules is used to

simulate the model.

This is only a sketch of the solution method. In fact, severalmethods are implemented. For example,

instead of using the simple updating rule in step3, a Newton, or inexact Newton, updating can be used when

feasible.

12 Examples of storage models

This section presents some examples of rational expectations models and their implementation in RECS. For

the simple competitive storage model, please see the tutorial in Section3.
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12.1 Competitive storage with floor-price backed by public storage (model: STO2)

This model is a simple extension of the competitive storage model in which government attempts to defend a

floor price through public storage sale and purchase. The model presented here is close to one of the models

presented inWright and Williams(1988).

This policy is characterized by the following interventionrule, similar to that applying to price band in

Section5.5. All public stocks are sold if the price exceeds the intervention price:

Pt > PF ⇒ SG
t = 0. (55)

Price can decrease below the floor if the capacity constraintS̄G is binding:

Pt < PF ⇒ SG
t = S̄G. (56)

Public stock accumulation occurs to defend the floor price:

Pt = PF ⇒ 0≤ SG
t ≤ S̄G. (57)

These three conditions can be written as one complementarity equation:

0≤ SG
t ≤ S̄G ⊥ Pt −PF. (58)

Using the same assumptions as in the competitive storage model presented in Section3, the equations

defining this model are for equilibrium equations

St : St ≥ 0 ⊥ Pt + k− (1−δ )βEt (Pt+1)≥ 0, (59)

Ht : βEt (Pt+1εt+1) = hHt
µ , (60)

Pt : At = Pt
α +SS

t +SG
t , (61)

SG
t : 0≤ SG

t ≤ S̄G ⊥ Pt −PF, (62)

and for the transition equation

At : At = (1−δ )
(

St−1+SG
t−1

)

+Ht−1εt . (63)

It should be noted that this model has only one state variable, availability (At ), because the decision to

accumulate public stock depends only on current availability, not on past public stock.

A simulation of this model involves exactly the same steps asin the competitive storage model, so we do

not repeat them here; rather, we focus on welfare analysis issues. The reader can consult the filesto2.m in

RECS demonstration files to see the model resolution.

39



Welfare analysis Given that this is a simple model, we use it to illustrate welfare analysis in this dynamic

stochastic setting. Instantaneous social welfare,wt , here, is the sum of consumer’s surplus, producer’s

surplus, storer’s surplus and public cost:

wt =
∫ P̄

Pt

D(p)dp+PtHt−1εt −Ψ(Ht)+ (1−δ )PtSt−1− (k+Pt)St +(1−δ )PtS
G
t−1− (k+Pt)SG

t . (64)

Ignoring in consumer’s surplus the term independent from policy choice and rearranging using (63), we

have

wt =−
P1+α

t

1+α
+PtAt −Ψ(Ht)− (k+Pt)

(

St +SG
t

)

. (65)

Intertemporal welfare is given byWt = ∑∞
i=0β iwt+i. It is clear that this infinite sum can be expressed as a

recursive equation:

Wt : Wt =−
P1+α

t

1+α
+PtAt −Ψ(Ht)− (k+Pt)

(

St +SG
t

)

+β Et (Wt+1) . (66)

Similarly consumer welfare could be calculated recursively as

WC
t : WC

t =−
P1+α

t

1+α
+β Et

(

WC
t+1

)

. (67)

Calculating the welfare of the other agents is not as simple because it generally involves additional state vari-

ables. Indeed, producer’s welfare depends on past planned production as well as availability, and similarly,

storer’s welfare is a function of past private stock. So it isimportant to find a way to express these welfare

changes as a function only of availability. Since the private storer operates in expectations at zero profit,

its welfare can be reduced to the first-period benefit from holding stocks:(1−δ )P0S−1. Similarly, we can

decompose producer’s welfare between the first-period change and later changes: producer’s welfare at time

0 is equal toP0H−1ε0+W P
0 , where

W P
t : W P

t = β Et (Pt+1εt+1)Ht −Ψ(Ht)+β Et
(

W P
t

)

. (68)

We assume that public stocks are zero when the policy starts,so government benefits or losses from public

storage are

W G
t : W G

t = [(1−δ )β Et (Pt+1)− k−Pt]S
G
t +β Et

(

W G
t

)

. (69)

Equations (66)–(69) can be included in the model definition file (available in filesto2welf.yaml):

# STO2WELF.yaml Model definition file for the competitive storage with floor-price backed by public storage

# Copyright (C) 2011-2012 Christophe Gouel

# Licensed under the Expat license, see LICENSE.txt

declarations:

states: [A]
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controls: [S, H, P, Sg, W, Wc, Wp, Wg]

expectations: [EP, EPe, EW, EWc, EWp, EWg]

shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS, PF, Sgbar]

equations:

arbitrage:

- P+k-EP*(1-delta)/(1+r) | 0 <= S <= inf

- EPe/(1+r) = h*H^mu | -inf <= H <= inf

- A = P^elastD+S+Sg | -inf <= P <= inf

- P-PF | 0 <= Sg <= Sgbar

- W = -P^(1+elastD)/(1+elastD)+P*A-h*H^(1+mu)/(1+mu)-(P+k)*(S+Sg)+EW/(1+r) | -inf <= W <= inf

- Wc = -P^(1+elastD)/(1+elastD)+EWc/(1+r) | -inf <= Wc <= inf

- Wp = EPe*H/(1+r)-h*H^(1+mu)/(1+mu)+EWp/(1+r) | -inf <= Wp <= inf

- Wg = Sg*(EP*(1-delta)/(1+r)-P-k)+EWg/(1+r) | -inf <= Wg <= inf

transition:

- A = (1-delta)*(S(-1)+Sg(-1))+H(-1)*e

expectation:

- EP = P(1)

- EPe = P(1)*e

- EW = W(1)

- EWc = Wc(1)

- EWp = Wp(1)

- EWg = Wg(1)

calibration:

parameters:

k : 0.06

delta : 0.02

r : 0.03

elastS : 0.2

h : 1/(1+r)

mu : 1/elastS

elastD : -0.2

PF : 1.02

Sgbar : 0.4
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steady_state:

A : 1

S : 0

H : 1

P : 1

Sg : Sgbar

W : (-P^(1+elastD)/(1+elastD)+P*A-h*H^(1+mu)/(1+mu)-(P+k)*(S+Sg))/(1-1/(1+r))

Wc : (-P^(1+elastD)/(1+elastD))/(1-1/(1+r))

Wp : (P*H/(1+r)-h*H^(1+mu)/(1+mu))/(1-1/(1+r))

Wg : Sg*(EP*(1-delta)/(1+r)-P-k)/(1-1/(1+r))

To analyze the welfare effect of introducing this policy, wehave to introduce the same welfare equations

in the competitive storage model. The model without policy and the model with policy are solved in the

Matlab filesto2welf.m:

function sto2welf

% STO2WELF Solves the floor-price model and calculates welfare changes

%% Pack model structures

Mu = 1;

sigma = 0.05;

model1 = recsmodelinit(’sto1welf.yaml’,struct(’Mu’,Mu,’Sigma’,sigma^2,’order’,7));

model2 = recsmodelinit(’sto2welf.yaml’,struct(’Mu’,Mu,’Sigma’,sigma^2,’order’,7));

%% Define approximation space

[interp1,s] = recsinterpinit(50,0.7,2);

interp2 = interp1;

%% Find a first guess through the perfect foresight solution

interp1 = recsFirstGuess(interp1,model1,s,model1.sss,model1.xss,5);

interp2 = recsFirstGuess(interp2,model2,s,model2.sss,model2.xss,5);

%% Solve for rational expectations (option: hide iterations)

[interp1,x1] = recsSolveREE(interp1,model1,s,[],struct(’display’,0));

[interp2,x2] = recsSolveREE(interp2,model2,s,[],struct(’display’,0));

%% Long-run simulation

[~,~,~,~,stat] = recsSimul(model1,interp1,ones(1E4,1),200);

[~,~,~,~,stat] = recsSimul(model2,interp2,ones(1E4,1),200);

%% Welfare change
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sinit = [1 0.2];

[W1,W2] = WelfareCalculation([1 0.2]);

DW = W2-W1;

disp(’Welfare change:’)

disp(DW)

fid = fopen(’./Published/sto2welf.tex’,’w’);

fwrite(fid,latex([DW(2:end) DW(1)],’%0.4f’));

fclose(fid);

%% Plot social welfare against initial availability

n = 100;

res = zeros(n,1);

H0 = linspace(0.8,1.7,n);

for i=1:n

[W1,W2] = WelfareCalculation([H0(i) 0]);

res(i) = W2(1)-W1(1);

end

figure

plot(H0,res)

xlabel(’Initial availability’)

ylabel(’Change in social welfare’)

set(gcf,’Color’,’w’)

export_fig sto2welf.eps

function [Welf1,Welf2] = WelfareCalculation(sinit)

% sinit is the decomposition of initial state between production and private

% stock: [H*eps (1-delta)*S]

%% Simulate the model for a given initial state variable to get welfare values

[~,xsim1] = recsSimul(model1,interp1,sum(sinit),0);

[~,xsim2] = recsSimul(model2,interp2,sum(sinit),0);

P0 = [xsim1(3) xsim2(3)];

beta = 1/(1+model1.params(3));

%% Calculate welfare

Welf1 = [xsim1(4:5) P0(1)*sinit(1)+xsim1(6) P0(1)*sinit(2) 0]*(1-beta);

Welf2 = [xsim2(5:6) P0(2)*sinit(1)+xsim2(7) P0(2)*sinit(2) xsim2(8)]*(1-beta);

end
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end

This generates two results: the welfare changes induced by the policy when it starts from a given initial

availability, and the sensitivity analysis of social welfare to initial availability. Table1 shows the welfare

change if initial availability is 1.2 of which 1 comes from production. Given the absence of any market

imperfections, the competitive equilibrium is optimal (Scheinkman and Schechtman, 1983) and the policy

decreases social welfare. It decreases consumer’s welfarebecause of the initial price increase due to stock

buildup and because of the negative slope of the demand function, which implies that consumers prefer

unstable to stable pricesWaugh(1944). In contrast, producer and storer benefit from the policy because of

the initial price increase.

Table 1. Welfare Results on Transitional Dynamics(as a percentage of the steady-state commodity budget)

Consumer Producer Storer Government Total

−0.0198 0.0237 0.0017 −0.0255 −0.0199

Figure1 shows how social welfare is affected by initial availability. Welfare changes are constant for low

availability, as nothing is stored. For a sufficiently high availability, the floor price starts to be binding and

public storage kicks in so social welfare decreases. It decreases until an availability of 1.4, where public

stock hits its capacity constraint,̄SG = 0.4.
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Figure 1. Sensitivity of social welfare to initial availability
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12.2 Two-country storage-trade model (model: STO6)

In this section, we describe a model that is useful to analyzethe effects of the interaction between one

country’s domestic food market and the rest of the world: a two-country storage-trade model. This model

extends the competitive storage model to a situation with two locations, countriesa andb indicated by the

subscripti ∈ {a,b}.16 It assumes that in each country there is a demand for final consumption, production,

and competitive storage.

The countries are connected through trade, which occurs when the price difference covers the trade costs.

Trade is decided by the following spatial arbitrage condition:

Xit ≥ 0 ⊥ Pit +θ ≥ Pjt , for j 6= i, (70)

whereXit is the export from regioni, andθ is the per-unit transaction cost, inclusive of transport costs. This

implies that the prices in countryi fall within a moving band that is defined by country-j price and trade

costs:

Pjt −θ ≤ Pit ≤ Pjt +θ , for j 6= i. (71)

When adjusted for the subscriptsi and j, the model’s equations are similar to the single country case, ex-

cept for market equilibrium, which now accounts for trade. So the equations defining this model are for

equilibrium equations, fori ∈ {a,b} and j 6= i:

Sit : Sit ≥ 0 ⊥ Pit + k− (1−δ )βEt (Pit+1)≥ 0, (72)

Hit : βEt (Pit+1εit+1) = hiHit
µ , (73)

Pit : Ait +X jt = γiPit
α +Sit +Xit , (74)

Xit : Xit ≥ 0 ⊥ Pit +θ ≥ Pjt , (75)

wherehi andγi are country-specific scale parameters for supply and demand. The transition equations are,

for i ∈ {a,b}:

Ait : Ait = (1−δ )Sit−1+Hit−1εit . (76)

Calibration on real data While the previous models were calibrated on arbitrary data, here we show how

to calibrate a model on real data. For this, we followLarson et al.(2012) who calibrate a similar model

for the wheat market between the Middle East and North Africa(MENA) region and the rest of the world

(RoW).17

Storage models in the current literature are not calibratedbased on the time-series behavior of the corre-

sponding variables as is common for DSGE models. In addition, there is no procedure in the RECS toolbox

16The trade-and-storage model was first developed inWilliams and Wright(1991, Ch. 9), and was subsequently analyzed in
Miranda and Glauber(1995), andMakki et al.(1996).

17In this case, the MENA region includes Algeria, Bahrain, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman,
Saudi Arabia, Syria, Tunisia, United Arab Emirates, and Yemen.
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to make these calibrations automatically. Consequently, the calibration we present here aims at ensuring

that a benchmark equilibrium is reproduced at the deterministic steady state, and remaining behavioral pa-

rameters are set based on literature survey.

The calibration focuses on the steady state because it can besolved easily without having to solve for the

stochastic rational expectations equilibrium, and since in practice it is close to the long-run mean, calibrating

the steady state on average observed values should reproduce them as the long-run average of the model

variables. To help the calibration, note that we have no storage at steady state since prices are constant:

S∗i = 0, where∗ indicates variables at their steady-state values. Since Eεi = 1, we have alsoA∗
i = H∗

i . As

can be seen in Table2, the MENA region is always importing wheat, which implies that

X∗
RoW > 0, (77)

X∗
MENA = 0, (78)

P∗
MENA = P∗

RoW+θ . (79)

It is important to note that a storage model represents a stationary equilibrium, but the corresponding data

are not stationary. So, to calibrate the model, we start by removing the underlying trend. The detrended

data are presented in Table2. Since there is no stock at the steady state, quantities haveto be adjusted to

be consistent with a steady-state equilibrium. The steady-state MENA price is defined by assuming that the

price difference between the regions reflects transport costs, which is set at $35.55/ton based on a recent

survey (World Bank and FAO, 2012). Choosing a reference equilibrium point is not sufficient to assign a

value to every parameter. To pick up parameters that cannot be identified at the steady state (elasticities,

storage costs, discount rate), we rely on the literature. Weare guided by the literature on commodity price

dynamics, which shows that observed price volatility is consistent with relatively low demand elasticities

(Roberts and Schlenker, 2009, Cafiero et al., 2011), thus, we assume demand elasticity to be equal to−0.12,

which is toward the lower end of commonly used elasticities.We consider a supply elasticity of 0.2, in

line with commonly used supply elasticities for wheat.18 Interest rates and per unit storage charges are

assumed to be the same for each region at 5% per annum and $22.40 per ton per annum, respectively.

The storage costs are based on the findings from a recent WorldBank study on wheat markets in MENA

(World Bank and FAO, 2012).

Using these behavioral parameters and target values at the steady state, we can calculatehi andγi using

equation (73) and (74).

This model and its calibration are written in the Yaml filesto6MENA.yaml:

# STO6MENA.yaml Model definition file for a two-country storage-trade model with supply reaction (calibration

# Copyright (C) 2011-2012 Christophe Gouel

# Licensed under the Expat license, see LICENSE.txt

# Country a is MENA, and b is RoW

18See, for example, FAPRI’s elasticity database, available on the internet athttp://www.fapri.iastate.edu/tools/elasticity.aspx.
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Table 2. Model calibration

MENA RoW

Calibration target at steady state

Consumption (million ton) 75.3 592.9
Production (million ton) 40.2 628
Price ($/ton) 211.55 176

Parameter

α −0.12
β 0.9524
γi 143.2 1102.7
δ 0
std(εi) 0.07 0.03
θ 35.55
µ 5
hi 1.92E−6 1.72E−12
k 22.4

Notes: Consumption, production and price in RoW targets aredetermined as 2011 trend values after applying a Holdrick-Prescott
filter (smoothing parameter of 400) to the underlying data (USDA, 2011, for consumption and production and World Bank, 2011,
for price). RoW consumption is adjusted to ensure global market equilibrium. MENA price target is defined by adding transport
cost to RoW price.

declarations:

states: [Aa, Ab]

controls: [Sa, Sb, Ha, Hb, Pa, Pb, Xa, Xb]

expectations: [EPa, EPb, EPea, EPeb]

shocks: [ea, eb]

parameters: [k, r, delta, ha, hb, mu, elastS, theta, elastD, gammaa, gammab, beta]

equations:

arbitrage:

.. Pa+k-EPa*(1-delta)/(1+r) | 0 <= Sa <= inf

.. Pb+k-EPb*(1-delta)/(1+r) | 0 <= Sb <= inf

.. EPea/(1+r) = ha*Ha^mu | -inf <= Ha <= inf

.. EPeb/(1+r) = hb*Hb^mu | -inf <= Hb <= inf

.. Aa+Xb = gammaa*Pa^elastD+Sa+Xa | -inf <= Pa <= inf

.. Ab+Xa = gammab*Pb^elastD+Sb+Xb | -inf <= Pb <= inf
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.. Pa-Pb+theta | 0 <= Xa <= inf

.. Pb-Pa+theta | 0 <= Xb <= inf

transition:

.. Aa = (1-delta)*Sa(-1)+Ha(-1)*ea

.. Ab = (1-delta)*Sb(-1)+Hb(-1)*eb

expectation:

.. EPa = Pa(1)

.. EPb = Pb(1)

.. EPea = Pa(1)*ea

.. EPeb = Pb(1)*eb

calibration:

parameters:

k : 22.4

r : 0.05

beta : 1/(1+r)

delta : 0

elastS : 0.2

mu : 1/elastS

elastD : -0.12

theta : 35.55

gammaa : (Aa+Xb-Sa-Xa)/Pa^elastD

gammab : (Ab+Xa-Sb-Xb)/Pb^elastD

ha : Pa*beta/Ha^mu

hb : Pb*beta/Hb^mu

steady_state:

Aa : Ha

Ab : Hb

Sa : 0

Sb : 0

Ha : 40.2

Hb : 628

Pa : 211.55

Pb : 176

Xa : 0

Xb : Hb-592.9

It can be seen that the values entered for the parameters and first guess of the steady state may each be
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function of the other, which facilitates model calibration.

The model is solved using the same commands as before, found in sto6MENA.m.
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