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1 Introduction

1.1 Background

Variants of rational expectations storage models are @eitneoclassical studies of the behavior of markets
for storable commaoditied/filliams and Wright 1991, Wright, 2001). Simple versions are tested economet-
rically, for example inDeaton and Laroquél992 and Cafiero et al.(2011). More complex models are
used to analyze the effects of public interventions in comtitganarkets Miranda and Helmberged 988
Gouel and Jear2012).

Like most dynamic stochastic problems, this model cannasddeed analytically. But contrary to most
stochastic problems studied, it presents specific nunieliitigulties related to the non-negativity constraint
on storage. This feature prevents this model from beingesblith popular software, such as Dynére,
which rely on perturbation methods and cannot handle oagaly binding constraints.

The lack of user-friendly softwares to solve storage modelghe past may have represented a serious
barrier to entry for research on these isstid@he RECS toolbox provides a modeling environment allowing
economists to focus on the economic problem at hand, whé&adiing from various issues related to the

numerical implementation.

This paper describes the RECS toolbox and also severakapplhis of this modeling framework to com-
modity markets related issues.

This document assumes basic knowledge of Matlabnd of dynamic economic models (see
Adda and CooperR2003 for an introduction). Storage models are presented irf;dae more information
please refer to the original papers oMiilliams and Wright(1991), which provide detailed descriptions of
many of these models.

1.2 Storage modeling in the African context

Corresponding to the needs of AGRODEP members, in thissseate emphasize the possible applications
of this toolbox in the context of African countries.

Given recent events on world food markets, many countriecantemplating or have introduced policies
to achieve greater independence from the world market anuaiect their vulnerable populations from
global food price spikes. Although these policies play @ liol the development of many countries (see
Rashid et al.2008 for the case of Asian countries), they often prove quitdlg@nd difficult to manage
(Gilbert, 1996 Jayne and Jong997). Because these policies are designed to affect the whaleetméhey
are not amenable to assessment by randomized trials asdasbeof policies targeting households. These
price policies affect the whole economy and every policyegikpent can be very costly. In this situation,

http://www.dynare.org/.

2The solversremsolve andresolve from Miranda and Facklef2002 andFackler(2005), respectively, provided a relatively
user-friendly approach to solving such models.

3Seehttp://www.mathworks.fr/academia/student_center/tutorials/launchpad.html for tutorials.
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it is useful to be able to test and analyze stabilizationguedi without entailing any human or fiscal costs,
using simulated economies that represent most of the ipiofécts related to commaodity price behavior.
This points to the role of the RECS toolbox, which providesnapde environment in which policy can be
designed (for applications, s&xouel 2011, 2013 Gouel and Jear2012). It can be used to compare the
costs and effectiveness of stabilization policies witteoflorms of interventions. For example, using RECS,
Larson et al(2012 compare the cost of a storage policy designed to protecueoars from high prices in
Middle East and North African countries with safety netd firavide an equivalent protection. Sectidn$
and12.1present two examples of public storage policies that ilusthow RECS can be used to analyze
them.

The RECS toolbox can be useful to analyze internationalosgils from domestic policies and the inter-
actions among different markets. Most domestic agricaltprice stabilization policies have an effect on
partner countries. Historically, this was the case with Bueopean CAP, which stabilized the European
market for several products (e.g., dairy, wheat) throughage and trade interventions, and, in so doing,
forced the rest of the world to shoulder more important adjests. The recent turmoil in the rice market
is a good example of what can happen when many countriese aathe moment, attempt to insulate their
markets from events on the world mark8tgyton 2009. In this context, African countries are not innocent
bystanders: they also implement policies that affect thed their partners’ market®¢rteous2012. All
these situations can be analyzed using RECS, for exampleedogducing the framework d¥lakki et al.
(1996 2001). The storage-trade model presented in Secii®r2 can be a starting point for this analysis,
and extensions of it.

The rational expectations modeling allowed by RECS can bd atso to analyze how the market reacts to
weather shocks, which might allow better calibration ofitifermation needed for public interventions. An
analysis of reactions to news in a rational expectationsageomodel is provided for example @sborne
(2004 for the Ethiopian grain market.

The RECS toolbox is not limited to storage models. It is desibto solve small-scale rational expectations
models, with a focus on models with occasionally bindingstrints. This implies that it can be used also
to understand household production, saving and storingviehin the presence of transaction costs and
market imperfections (sdeark 2006 for a model of Chinese rural households).

To summarize, RECS provides a user-friendly environmemteteelop small dynamic, stochastic models
in which agents’ expectations of other agents’ behaviorketa and policies matter. These situations are
pervasive in developing countries’ food markets, whereitmgortance of food, and the risks implied by
weather and price volatility, compel households to engagephisticated risk coping strategi€af{champs
2003.

1.3 RECS toolbox

RECS is a Matlab solver for dynamic, stochastic, rationgleetations equilibrium models. RECS stands
for “Rational Expectations Complementarity Solver”. Th&me emphasizes that RECS has been developed



specifically to solve models that include complementagyations, also known as models with occasionally
binding constraints.

Unless stated otherwise, all files in the RECS toolbox asnBed using the Expat license, a permissive free
software license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,

subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Please see the software license for more informdtion.

RECS source code and development version is availabletat : //github. com/christophe-gouel/recs.
Bug should be reported attps://github.com/christophe-gouel/RECS/issues.

2 Installation

Download RECS Toolbox zip archives are availablehatp://code.google.com/p/recs/.

Why is this archive 12 MB? Much of this size is due to an exduaetéor Windows. The executable file
includes a complete Python distribution necessary to fRESeS model files.

Dependencies

e Matlab R2009b or later.

“https://raw.github.com/christophe-gouel/RECS/master/LICENSE. txt.
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e CompEcon toolbox. RECS depends on the CompEcon toolbox for many programsdiesipavith
respect to interpolation). Please follow CompEcon inatalh instructions ando not forget to create
the mex files if you want your models solved in a reasonable.tim

Optional dependencies

e Path solver for MatlaB. Path is the reference solver for mixed complementarity lerab (see Sec-
tion 5). Its installation is highly recommended if difficult congphentarity problems need to be
solved.

e MATLAB Optimization Toolbox. The solvefsolve can be used to solve both the equilibrium equa-
tions and the rational expectations equilibrium.

¢ Sundials ToolboX, which provides a compiled Newton-Krylov solver for solvitige rational expec-
tations equilibrium.

e Matlab Statistics Toolbox. Useful to simulate models inethshocks follow other distributions than
the normal.

Installation instructions

1. Download the latest RECS archivenatp://code.google.com/p/recs/ and unzip itinto a folder,
called hererecsfolder (avoid folder names that include spaces, even for pareters).

2. Install the CompEcon toolbox:

(a) Download the CompEcon toolbox archivéatp: //www4 .ncsu.edu/ pfackler/compecon/;
(b) Unzip the archive into a folder, called herenpeconfolder;

(c) Add CompEcon to the Matlab path:
addpath(’ compeconfolder/CEtools’, ’compeconfolder/CEdemos’);

(d) Typemexall in Matlab prompt to create all CompEcon mex files.
3. (optional) Install other dependencies.
4. Add the RECS folder to the Matlab pattddpath(’recsfolder’).

5. On Windows, you are all set. On other architectures, yduhaie to install some Python packages.
see instructions below.

6. You can test your installation by running RECS demonisindiles by typingrecsdemos. You can
also access RECS documentation in Matlab by tyging

Shttp://wwwé.ncsu.edu/ pfackler/compecon/.
Shttp://pages.cs.wisc.edu/"ferris/path.html.
"https://computation.llnl.gov/casc/sundials/main.html.
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Install on Linux Python 2.7.X is required. On Debian/Ubuntu, type in a teghin

sudo apt-get install python-yaml python-scipy python-sympy

Install on Mac In this case, you are on your own. You have to install

e Python 2.7.X€ Python is preinstalled on Mac, but is usually too old to beulse
e PyYam!®

o SymPy0

e SciPy!!

One solution might be to install a scientific Python disttiba such as EPB?

Let me know whether or not it works.

3 A RECS tutorial (model: STO1)

This tutorial example enables a quick overview of RECS festuThe example is the competitive storage
model presented iWright and Williams(1982. It serves as the benchmark model from which all the other
storage models presented in this paper will be derived.

3.1 The standard rational expectations storage model

There are three risk-neutral, representative agentsrerstoproducer and a consumer, and one commaodity.
The consumer is simply represented by its demand functissyraed here to be isoelastd(P) = PY,
whereaq is the demand elasticity.

The storer’s activity is to transfer a commodity from oneipero the next. Storing the quanti from
periodt to periodt + 1 entails a purchasing coftS, and a storage cog, with k the unit physical cost of
storage. In addition, a shadeof the commodity deteriorates during storage. The benefieiiodt are the
proceeds from the sale of previous stockb:- ) RS_1. The storer follows a storage rule that arbitrages
intertemporal profit opportunitie’s:

§>0 L (1-9)BE(Rs1)-R-k<O, 1)

8http://www.python.org/download/.
%http://pyyaml.org/wiki/PyYAML.
Ohttp: //sympy.org.
Uhttp://www.scipy.org/Download.
http: //www . enthought . com/.
13Complementarity conditions in what follows are writtenngsihe “perp” notation (). This means that the expressions on
either side of the sign are orthogonal. If one equation hwitls strict inequality, the other must have an equality (Seetion5 for
details on complementarity problems).
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where E denotes the mathematical expectations operator condit@ninformation available at timeand

B =1/(1+r) is the discount factor. This equation means that invergaie null when the marginal cost
of storage is not covered by expected marginal benefits;dsitipe inventories, the arbitrage equation holds
with equality. So this is a situation of a stabilizing spedian, the storer buys when prices are low and when
he rationally expects that they will be higher later.

The representative producer makes his productive choiegeriod before bringing output to market. He
puts in production in periotl a levelH; for periodt + 1, but a multiplicative disturbance affects final pro-
duction (e.g., a weather disturbance). The producer clabseproduction level by solving the following
maximization of expected profit:

{HT%EO E {;)Bi (RyigriHiyio1— W (Hei)] } ; (2
whereW (H;) is the cost of planning the producti¢th andH;& 1 is the realized production levek; is
the realization of an i.i.d. stochastic process of mean fyemous to the producer. This problem gives the
following Euler equation:

BE:(Ri1&41) =W (H). )

The marginal cost is assumed to be isoelastic and an inogefsiction of planned production, as increasing
production requires increasing the use of less fertiledawti(H;) = hH}, whereh is a scale parameter and
U is the inverted supply elasticity.

At the beginning of each period, three predetermined visathefine the state of the mod&: 1, H; _; and

&. These three variables can be combined in one state varafaligability (A;), the sum of production, and
carry-over:

A=H_1&5+(1-96)S-1. (4)

Market equilibrium can be written as
A=D(R)+S. )

From the above equations, we see that a storage model is didfinéhree response/control variables
{S,H:,R}, and one state variabl&, corresponding to three equilibrium equatiod$, (3), and 5), and
one transition equatior.

3.2 lItsrepresentation in RECS

The RECS representation of this problem is very similar scalgebraic representation and is as follows
(available in filestol.yaml):

# STO1.yaml Model definition file for the competitive storage model
# Copyright (C) 2011-2012 Christophe Gouel
# Licensed under the Expat license, see LICENSE.txt



declarations:

states: [A]

controls: [S, H, P]

expectations: [EP, EPel

shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS]

equations:
arbitrage:
- P+k-EPx(1-delta)/(1+r) I 0 <= S <= inf
- EPe/(1+r) = h*H"mu | -inf <= H <= inf
- A = P~elastD+S | -inf <= P <= inf
transition:

- A = (1-delta)*S(-1)+H(-1)*e

expectation:

- EP
- EPe

P(1)
P(1)x*e

calibration:

parameters:
k : 0.06
delta : 0.02

r : 0.03
elastS : 0.2
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h ¢ 1/(1+r)
mu : 1/elastS
elastD : -0.2

steady_state:

U o- nn o=
= =, O

Observe that, this file, in addition to the definition of vaies and equations, contains the values necessary
to calibrate the model.

3.3 Solving the storage model under Matlab

Once the Yaml file of a model has been written, which can be@e dsing the Matlab editor, solving the
model involves following under Matlab these 4 steps:

i. Create the model structure in Matlab.
ii. Define the approximation space.
iii. Define a first-guess for the solver.

iv. Solve for the rational expectations equilibrium.

We now detail these steps for the case of our example model.

3.3.1 Create the model structure in Matlab

So far, Matlab does not know anything about the Yaml file anénef it did, although the file is easy to
read and write for human, it is meaningless for Matlab. So axesho tell Matlab to use the Yaml file, and
convert it to a file format suitable for Matlab. This is donethg functionrecsmodelinit, which creates
a structure containing the model, its shocks, paramet@rsteady-state as follows

Mu =1;
0.05;

sigma

model = recsmodelinit(’stol.yaml’,struct(’Mu’,Mu,’Sigma’,sigma~2,’order’,7));

11



Deterministic steady state (equal to first guess)
State variables:
1

Response variables:
011

Expectations variables:
11

In creating the model structure, this function call alsalketo calculation of the model deterministic steady
state using as a first guess the values provided in the Yaml file

3.3.2 Define the approximation space

Having defined the model, we need to define the domain ovetithidll be approximated and the precision
of the approximation. The approximation space is definedheyunctionrecsinterpinit, which requires
three inputs: the number of points on the grid of approxiomatthe lower bound, and the upper bound. In
this case, we choose 30 points for the grid, and bounds amedetfelative to the steady-state value: half of
it for the lower bound and 80% above it for the upper bound.

[interp,s] = recsinterpinit(30,model.sss/2,model.sss*1.8);

This function creates the structuteterp, which contains all the information related to the appraadion
space, and the variabe which is the grid of state variables.

3.3.3 Define afirst-guess for the solver

The rational expectations solver has to be initialized feogood starting point to ensure convergence to the
rational expectations equilibrium. This can be done autmaly by calculating the perfect foresight solu-
tion on the grid point corresponding to the stochastic mablUsing the two structures created previously,
this is done by the functionecsFirstGuess:

[interp,x] = recsFirstGuess(interp,model,s,model.sss,model.xss,5);
3.3.4 Solve for the rational expectations equilibrium

Now we have all the elements required to solve the model: rdafaition, approximation space, and first
guess. All these elements have to be passed to the funetiysolveREE:

[interp,x] = recsSolveREE(interp,model,s,x);
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Successive approximation

Iteration Residual

1 2.4E-001
2 4.2E-002
3 3.2E-002
4 2.7E-002
5 1.7E-002
6 6.6E-003
7 1.9E-003
8 5.1E-004
9 1.3E-004
10 3.2E-005
11 8.1E-006
12 2.0E-006
13 5.0E-007
14 1.2E-007
15 2.5E-008
16 1.6E-015

It outputsinterp, the interpolation structure that has been updated to itottia approximation of the
policy rules, andk the response variables on the grid.

3.3.5 Analyze the results

Once the model is solved, it is possible to analyze its behavihis is done below through a stochastic
simulation that generates the main moments from the asyimplistribution.

[*,7,7,7,stat] = recsSimul (model,interp,model.sss(ones(1000,1),:),200);
subplot(2,2,1)

xlabel (’Availability’)
ylabel (’Frequency’)
subplot(2,2,2)

xlabel (’Storage’)

ylabel (’Frequency’)
subplot(2,2,3)
xlabel(’Planned production’)
ylabel (’Frequency’)
subplot(2,2,4)

xlabel (’Price’)

ylabel (’Frequency’)

Statistics from simulated variables (excluding the first 20 observations):
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Moments

Mean Std. Dev. Skewness Kurtosis Min
1.0167 0.0518 0.0190 2.9848 0.7767
0.0158 0.0221 1.6203 5.3890 0
1.0010 0.0081 -1.4053 4.3248 0.9543
1.0147 0.2011 1.9070 8.1329 0.6953
Correlation
1.0000 0.8703 -0.8793 -0.9033
0.8703 1.0000 -0.9982 -0.5825
-0.8793 -0.9982 1.0000 0.5965
-0.9033 -0.5825 0.5965 1.0000
Autocorrelation
1 2 4 5
0.2152 0.0438 0.0024 -0.0037 -0.0066
0.2463 0.0536 0.0035 -0.0051 -0.0083
0.2449 0.0532 0.0034 -0.0053 -0.0081
0.1188 0.0188 -0.0009 -0.0033 -0.0043
x 10* x 10°
4 15
oy 3 & 10
c c
g5 g
5 5
i L 5
1
0 0
0.8 1 1.2 1.4 0 0.05 0.1 0.15 0.2
Availability Storage
x 10* x 10
15 10
8
> >
> >
g g 4
L 5 iy
2
0 0
094 096 0.98 1 1.02 0 1 2 3 4
Planned production Price

figure
subplot(1,3,1)
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plot(s,x(:,1))
xlabel(’Availability?)
ylabel(’Storage’)
subplot(1,3,2)
plot(s,x(:,2))
xlabel(’Availability?)
ylabel(’Planned production’)
subplot(1,3,3)
plot(s,x(:,3))
xlabel(’Availability’)
ylabel (’Price’)

0.9 ; 1.04 ; 6
0.8f 1.02}
5,
0.7 1t
0.6 c 0.98} at
k)
g
2 05 3 0.96} o
g = 23
9 he] o
h 0.4 © 0.94f
c
<
0.3 & 092} 2t
0.2 0.9
1,
0.1 0.88f
0 0.86 ‘ 0 :
0 0 1 2 0 1 2
Availability Availability Availability

4 Convention to define stochastic rational expectations ptdem in RECS

4.1 Rational expectation models

There are several ways to define rational expectations mo&ECS adopts a controlled-process conven-
tion in which the values taken by control, or response, emare decided at each period based on the
values of state variables. The convention follows the fraork proposed iFackler(2009, and used also
in Winschel and Kratzig2010. A model can be defined by the following three equations,revtiene sub-
scripts are implicit for current-period variables, andtageriod variables are indicated with thesubscript,
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while previous-period variables are indicated with theubscript:

x(s) <x<X(s) L f(sx2), wheref ; R&+™P _, RM (6)
z=E[h(s,x,e.,s.,%, )], whereh ; RA+mtatdtm _, pp (7)
s=g(s_,x_,e), whereg : R&™ 4 _; R4, (8)

Variables have been partitioned into state variatdesesponse variableg, and shockse. Response vari-
ables can have lower and upper boundandx, which themselves can be functions of the state variables.
Expectations variables, denoted hyare also defined, because they are necessary for solvingdtel
considering the implemented algorithms.

The first equation is the equilibrium equation. It chardzes the behavior of the response variables given
state variables and expectations about the next period gétwarality, it is expressed as a mixed comple-
mentarity problem (MCP, if you aren’t familiar with the defion of MCP, see SectioB). In cases where
response variables have no explicit lower and upper bowndgve infinite ones, equatiof)(simplifies to
a traditional equation:

0= f(s,x2). 9)

The second equatioryY) defines the expectations. The last equati@, i6 the state transition equation,
which defines how state variables are updated based on gasineges, past states and contemporaneous
shocks.

4.2 Restrictions imposed by the RECS convention

Distinction between state variables and other variables In many models, it is possible to simplify the
state transition equation= g(s_,x_,e). For example, it is possible to hage- e if some shocks are not
serially correlated, os = x_ if the state is just a previous period response variablethdratter case, one
might be tempted to reduce the number of variables in the hmydmtroducing the lag response variable
directly in the equilibrium equation. This should not be o state variable corresponding to the lagged
response variable or to the realized shock has to be created.

One consequence is that lags can only appear in state imarsifuations, &), and in no other equations.

Lags and leads RECS only deals with lags and leads of one period. For a moitlellags/leads of more
periods, additional variables have to be included to redueeumber of periods.

In addition, leads can only appear in the equations definipgaations, 7). So no leads or lags should
ever appear in the equilibrium equations.

Timing convention In RECS, the timing of each variable reflects when that végisdecided/determined.
In particular, the RECS convention implies that state \deis are determined by a transition equation that
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includes shocks and so are always contemporaneous to skeweksvhen shocks do not actually play a role
in the transition equation. This convention implies tha timing of each variable depends on the way the
model is written.

One illustration of the consequences of this conventiohdgitming of planned production in the competitive
storage model presented as a tutorial (Se@)ofPlanned productior;, will only lead to actual production
in t4+ 1 and will be subject to shocks;. 1, so it is tempting to use &+ 1 indexing. However, since it is
determined int based on expectations of peribgt 1 price, it should be indexetd

4.3 Anexample

As an example, consider the competitive storage model pi@dén tutorial. It is composed of four equa-
tions:

§:320 L1 (1-9)BE(R+1)—-R-k<0, (10)
He: BEt (Ri1&:1) =W (Hy), (11)
R:A=D(R)+S, (12)
AciAc=H 16+ (1-0)S 1, (13)

whereS H, P, andA respectively represent storage, planned productione jaricl availability.

There are three response variablgs= {S,H;,R}, and three corresponding equilibrium equatioh8){
(12. These equations include two terms corresponding to eéxpexs about period + 1. z =

{Et(Ry1), Bt (Ry1&41) -

There is one state variable, availabilitg: = {A;}, which is associated to the transition equati@B)( It
would have been perfectly legitimate to define the model witite state variables, such as production and
stocks, since availability is the sum of both, and this wawdt prevent the solver from finding the solution,
however, it is generally not a good idea. Since the solutiethiods implemented in RECS suffer from the
curse of dimensionality, it is important where possible dmbine predetermined variables to reduce the
number of state variables.

Corresponding to RECS convention, this model is defined &ydhowing three functiong f,h,g}:

R+k—z:(1-9)B

f=< Bz — W (H) (14)
A-D(R)-S
R
h=
{ Ri1&41 } (13)
g= {Ht—lst+(l_5) S—l} (16)
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4.4 Solving a rational expectations model

What makes solving a rational expectations model comglita that the equatior?), defining the expecta-
tions, is not a traditional algebraic equation. It is an ¢igmathat expresses the consistency between agents’
expectations, their information set, and realized outme

One way to bring this problem back to a traditional equat®moi find an approximation or an algebraic
representation of the expectations terms. For examplé,isf possible to find an approximation of the
relationship between expectations and current-perioe staiables (i.e., the parameterized expectations
approach irden Haan and Marcegt990), the equilibrium equation can be simplified to

X(s) <x<X(s) L f(sx.2(s¢c)), (17)

where Z (s, c;) approximates the expectationas a function o, andc; are the coefficients characterizing
this approximation. Using this approximation, equati@i) (can be solved fox with any MCP solvers. So
the crux of solving rational expectations model is to find adyavay to approximate the expectations.

The RECS solver implements various methods to solve rdtexpgectations models and to find approxima-
tion for the expectations terms. See Sectidrior a sketch of the algorithm.

5 Introduction to mixed complementarity problems

To be able to reliably solve models with occasionally bigdaonstraints, all equilibrium equations should
be represented in RECS as mixed complementarity problenr@P{VHere, we present a short introduction
to this kind of problems. For more information, deetherford(1995, andFerris and Pan{L997).

5.1 Definition of a mixed complementarity problem

Complementarity problems can be seen as extensions ofesgystems of nonlinear equations that incorpo-
rate a mixture of equations and inequalities. Many econgmaiblems can be expressed as complementarity
problems. An MCP is defined as follows (adapted friglunson 2002):

Definition. (Mixed Complementarity Problem) Given a continuously eliéntiable functiorF : R" — R",
and lower and upper bounds

| € (RU{—w}}",
ue {RU{+e}}".

The mixed complementarity problehn< x < u L F(x) is to find ax € R" such that one of the following
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holds for each € {1,...,n} :

F(x) =0andl; <x < u, (18)
Fi(x) > 0 andx = I;, (19)
F(x) <0 andx = u;. (20)

To summarize, an MCP problem associates each varigbl®, a lower boundl;, an upper boundy;, and
an equationf;(x). The solution is such that ¥ is between its bounds thdf(x) = 0. If x; is equal to its
lower (upper) bound theR () is positive (negative).

This format encompasses several cases. In particulare#dyg to see that with infinite lower and upper
bounds, solving an MCP problem is equivalent to solving asggystem of nonlinear equations:

—o<x<+0 1 F(xx) & Fx=0.

5.2 A simple example of mixed complementarity (model: CS1)

We consider here the traditional consumption/saving emblvith borrowing constraintDieaton 1991).
This problem is solved as a demonstration, see problem C®i isection Demos in the RECS documenta-
tion. A consumer with utilitys > yu(Ct)/(1+ d)' has a stochastic incomé,and has to choose each period
how much to consume and how much to save. He is prevented fooroviing, but can save at the rate
Without the borrowing constraint, his problem consiststafasing its consumptio@; such that it satisfies
the standard Euler equation:

(€)= g [ G,

The borrowing constraint implies the inequalily < X;, whereX; is the cash on hand available in period
and defined as

Xo=(1+r)(%-1-C-1)+ VX

When the constraint is binding (i.€; = X;), the Euler equation no longer holds. The consumer woué lik
to borrow but cannot, so its marginal utility of immediatexsamption is higher than its discounted marginal

utility over future consumption:

U (C) 2 T [ (G)].

Since the Euler equation holds when consumption is not minsd, this behavior can be summarized by
the following complementarity equation

1+r
1+90

G<x L E [V (Cr1)] U (Q).
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5.3 When do complementarity problems arise?

In addition to encompassing nonlinear systems of equat@mplementarity problems appear naturally in
economics. Although not exhaustive, we present here fexatsiins that lead to complementarity problems:

e Karush-Kuhn-Tucker conditions of a constrained nonlinear program. The first-order coouiitiof
the following nonlinear programming problem mif(x) subject tog(x) < 0 andl < x < u can be
written as a system of complementarity equations:

l<x<u 1 f'(X-Ad(x), (21)
A>0 L —g(x) >0, (22)

whereA is the Lagrange multiplier on the first inequality consttain
e Natural representation eégime-switching behavior. Let us consider two examples.

— A variabley that is determined as a function of another variabbes long ag is superior to a
lower bounda. Put simply:y = max[a,A (x)]. In MCP, we would write thisag>a L y> A (x).

— A system of intervention prices in which a public stock iswaoalated when prices decrease
below the intervention price and sold when they exceed tteniention price (see also the
demonstration problem in Sectid2.1) can be represented &> 0 L. P—P' > 0, whereS, P
andP', respectively, are the public storage, the price and thevantion price.

e A Walrasian equilibrium can be formulated as a complementarity probléfiathiesen 1987 by
associating three sets of variables to three sets of inkiggalnon-negative levels of activity are as-
sociated to zero-profit conditions, non-negative pricesaasociated to market clearance, and income
levels are associated to income balance.

5.4 Conventions of notations adopted for representing conipmentarity problems

To solve complementarity problems, RECS uses several rsolvehe convention adopted in most MCP
solvers and used by RECS is the one used above in the MCP idefirsuperior or equal inequalities are
associated with the lower bounds and inferior or equal inétigs are associated with the upper bounds. So,
when defining your model, take care to respect this conventio

In addition, in Yaml files inequalities should not be writtexplicitly. As an example, let's consider these 5
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MCP equations:

F(x) =0, (23)

y>a L1 G(y)=0 (24)
1 H(z<0, (25)

a<k<b 1 J(k), (26)
l>a 1 M()<O. (27)

They would be written in a Yaml file as

- F(x)=0 | -inf<=x<=inf
- G(y) | a<=y<=inf
- H(z) | -inf<=z<=b
- J(k) | a<=k<=b
- -M1) | a<=1<=inf

Note that it is necessary to associate lower and upper bowitkd€very variables, and the “perp” symbol
(L) is substituted by the vertical bar)( which is much easier to find on a keyboard. So if there aremiie fi
bounds, one has to associate infinite bounds, as for equ2®pnThe last equation 2{), does not respect
the convention that associates lower bounds on variablisswperior or equal inequality for equations, so,
when writing it in the Yaml file, the sign of the equation neéalbe reversed.

5.5 Example: MCP representation of a price-band program (malel: STO4)

Price-band policies constitute an excellent applicatmrMCP modeling. Although this policy is simple to
express in words, it needs some reformulation and attetdibe expressed as an MCP problem.

This problem is analyzed in depth Miranda and Helmbergg1988. This model is an extension of the
competitive storage model in which government interveneddiending a price band through purchase and
sale of public storage. Here, we present an extensidfieinda and Helmbergdd 988 in which there is a
capacity constraint on the public stock level.

With a capacity constraint on public stoc®, the behavior of a price-band obeys some simple principles.
When the price is above the floor prid&, there is no accumulation of public sto;

R>P =AS<0. (28)
Likewise, when the price is below the ceiling pri€¥, government does not sell stock:

R <P°=AS>0. (29)
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When the capacity constraint is reached, the floor pricetislefended and the price can decrease below it:
R<PF=AF=S-F,. (30)
Finally, the ceiling price is not defended when the publaxktis exhausted:

R>P = AS = -5 ;. (31)

To express these four conditions as complementarity espstive need to introduce two variablesS®"
andAS®~, which refer to increases and decreases in public stock &etpositive and bounded from above.
The increase in public stock is bounded from above by the irdntastorage capacity, and the decrease in
public stock by the level of existing stocks. To defend tHegeband, public stocks are managed by the four
conditions £8)—(31), which can be restated as two mixed complementarity eojusti

0<ASF " <S—-§, L R-F, (32)
0<AS <, 1L P°-R. (33)

Equation 82) means that public stocks increase to prevent the price flecneasing below the floor price,
PF. The floor is defended until public stocks reach the ligfit Equation 83) governs the decrease in public
stocks. They decrease to prevent the price from rising atimveeiling price P¢. The release of stocks is
constrained by the existing level of stocks ;.

Market equilibrium and public stock transition are then wiedi by-*

A =D(R)+S+AS" — A", (34)
=1 +0F -AF". (35)

The recursive equilibrium under a price-band program isnéefiby the equilibrium equationd)( (3)
and B2)—(34), and the transition equationd)(@nd 35).

6 Setting Up a Rational Expectations Problem

6.1 Structure of RECS model files
6.1.1 Structure of a rational expectation models

Before starting to write the model file, you need to organiaeryequations as described in SectibrThis
means that you need to identify and separate in your modébtiogving three group of equations:
Equilibrium equations

X(s) <x<x(s) L f(sx2). (36)

14Note that here, for simplicity, this model does not assunyedepreciation during storage.
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Expectations definition
z=E[h(s.x,€;.5:,%,)]. (37)

Transition equations
s=g(s_,x_,e). (38)

When defining your model, it is important to try to minimizethumber of state variables. Currently, RECS

relies for interpolation on grids constructed with tensarducts, so the dimension of the problem increases
exponentially with the number of state variables. This iegthat RECS should be used only to solve small-
scale models: more than three or four state variables may tihakproblems too large to handle. One way

of reducing the problem size is, whenever possible (as ircoinepetitive storage model), to sum together

the predetermined variables that can be summed.

6.1.2 Structure of RECS model files

An RECS model can be written in a way that is quite similar ® dhniginal mathematical notations (as is
proposed in most algebraic modeling languages). The mddehfit must be created is called a Yaml file
(because it is written in YAME® and has the yaml extension). A Yaml file is easily readable by humans,
but not by Matlab. So the file needs to be processed for Matldietable to read it. This is done by the
functionrecsmodelinit, which uses a Python preprocesstir] o-recs, to do the job.

RECS Yaml files require three basic components, writtenessicely:

1. declarations — The blockdeclarations contains the declaration of all the variables, shocks and
parameters that are used in the model. Inside this blocke #re five sub-blocksitates, controls,
expectations, shocks, andparameters with corresponding elements declarations.

2. equations — The blockequations declares the model's equations.

3. calibration — The blockcalibration provides numerical values for parameters and a first-guess
for the deterministic steady-state.

Yaml file structure  Toillustrate a complete Yaml file let us consider how to wilite competitive storage
model in Yaml (available in filatol.yaml):

# STO1.yaml Model definition file for the competitive storage model
# Copyright (C) 2011-2012 Christophe Gouel
# Licensed under the Expat license, see LICENSE.txt

declarations:

Bhttp://yaml.org.
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states: [A]

controls: [S, H, P]

expectations: [EP, EPe]

shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS]

equations:
arbitrage:
- P+k-EP*(1-delta)/(1+r) | 0 <= S <= inf
- EPe/(1+r) = h*H "mu | -inf <= H <= inf
- A = P~elastD+S | -inf <= P <= inf
transition:

- A = (1-delta)*S(-1)+H(-1)*e

expectation:
- EP =P
- EPe = P(1)*e
calibration:
parameters:
k : 0.06
delta : 0.02
r : 0.03
elastS : 0.2
h : 1/(1+1)
mu : 1/elastS
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elastD : -0.2

steady_state:

U o-m N o=
=, O

Yaml files can be written with any text editor, including Maileditor.

Yaml syntax conventions For the file to be readable, it is necessary to respect sontaxsgonventions:

e Association equilibrium equations/control variables/bainds: Each equilibrium equation must be
associated with a control variable. It really matters faraggpns with complementarity constraints. If
the equation is not a complementarity equation, the preagseciation with a control variable does
not matter. The equation and its associated variable asgaep by the symbol |. Control variables
must be associated with bounds, which can be infinite.

e Indentation: Inside each block elements of the same scope have to be éudesing the same
number of spaces (do not use tabs). For the above examptis thedeclarations block, states,
controls, expectations, shocks, andparameters are indented to the same level.

e Each equation starts with a dash and a spae€’);' not to be confused with a minus sign. To avoid
confusion, it is possible instead to use two points and aesffac "), or two dashes and a space

(- ).

e Comments: Comments are introduced by the charadter

e Lead/Lag: Lead variables are indicated 1) and lag variableZ(-1).
e Timing convention:

— Transition equations are written by defining the new stat@lke at current time as a function
of lagged response and state variab&s: 9(s-1,%-1,@).

— Even if expectations are defined y= E; [h(s,%,&+1,5+1,%+1)], When writing them in a
Yaml file the shocks are not indicated with a lead. This candlem $n the example above where
P . 1&.1 Is written asEPe = P (1) xe.

e Do not uselambda as a variable/parameter name, this is a restricted word.
e Write equations in the same order as the order of variablelsudion.

e Yaml files are case sensitive.
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6.2 Defining the model structure

Now the model should be written in a Yaml file, however Matla®sl not know anything about the Yaml
file and, even if it did, although the file is easy for humansetadrand write, it means nothing to Matlab. So
we have to tell Matlab to use the Yaml file and to convert it tomfat suitable for Matlab. Also, we have
to provide additional information about the structure afcs.

6.2.1 Convert the Yaml file and create the model structure

This task is done by the functiarecsmodelinit that calls a Python preprocessor, to convert the model
described in a Yaml file to a file readable by Matlab and REC$naras. In the conversion, it calculates
the analytic representation of all partial derivatives.

A simple call torecsmodelinit takes the following form:
model = recsmodelinit(’file.yaml’);

This call does two things:

e It convertsfile.yaml to filemodel.m, which contains the model definition in a Matlab readable
form but also all the derivatives of the equations, plus sadgitional information such as the param-
eters values for calibration or a first guess for the steaaty st

e |t creates in Matlab workspace the structueelel with two fields: the function nameunc equal to
@filemodel, and the parameters valugaranms, if these latter have been provided in the Yaml file.

6.2.2 Shocks with a Gaussian distribution

If your shocks follow a Gaussian distribution, you can alsefire their structure when calling
recsmodelinit. It requires defining a structure with three fields charatey the distribution mean, vari-
ance/covariance matrix, and order of approximation, withdall

model = recsmodelinit(’file.yaml’,...
struct (’Mu’ ,Mu, >Sigma’,Sigma, ’order’,order));
HereMu is a size-q vector of the distribution meaigma is a g-by-q positive definite variance/covariance
matrix, andorder is a scalar or a size-q vector equal to the number of nodesafdr ghock variable.

This function call creates at least three additional fiefdhe model structuree a matrix of the nodes for
the shocks discretizatiom;the vector of associated probabilities; ahchrand an anonymous function that
can generate random numbers corresponding to the undgdistribution.

If a first-guess for the deterministic steady state has bearided, recsmodelinit attempts also to find
the deterministic steady state of the problem. If it find# i§ displayed on screen and output as three fields
in the model structuresss, xss, andzss for, respectively, the steady-state values of state, respand
expectations variables.

26



6.2.3 Anexample

Let us consider the example of the competitive storage mddhe complete function call in stol.m is:

Mu =1;
0.05;

sigma

model = recsmodelinit(’stol.yaml’,struct(’Mu’,Mu,’Sigma’,sigma~2,’order’,7));

Deterministic steady state (equal to first guess)
State variables:
1

Response variables:
011

Expectations variables:
11

It is important to notice that variables names are not digaehere and will not be displayed in subsequent
steps. Variable names are used only in the symbolic modaiitiefi in the Yaml file. Once the Yaml file
has been processed, variables are merely ordered basegirooriginal order in the Yaml file. In this case,
it means that, in the steady-state results above, for thgnsg variables the first number is storage, the
second is planned production, and the third is price.

The model structure has the following fields:

disp(model)

func: @stolmodel
params: [0.0600 0.0200 0.0300 0.9709 5 -0.2000 0.2000]
e: [7x1 double]
w: [7x1 double]
funrand: @(nrep)Mu(ones(nrep,1),:)+randn(nrep,q)*R
sss: 1
xss: [0 1 1]
zss: [1 1.0000]
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6.3 Defining the interpolation structure
6.3.1 Define the interpolation structure

Following the previous two steps to completely define theébjenm, it remains only to define the domain
over which it will be approximated and the precision of theragimation.

Create the interpolation structure This task is done by the functiarecsinterpinit, which requires
at least three inputs: the number of points on the grid of @gpration, the lower bounds and the upper
bounds of the grid.

The structure of the call tbecsinterpinit is then
[interp,s] = recsinterpinit(n,smin,smax,method);

The inputs are as follows: designates the order of approximation (if it is a scalarsdr®e order is applied
for all dimensions)smin andsmax are size-d vectors of left and right endpoints of the statespand the
(optional) stringmethod defines the interpolation method, either splineplli’, default), or Chebyshev
polynomials ¢ cheb’).

This function call returns two variables: the structiiteerp, which defines the interpolation structure, and
the matrixs, which represents the state variables on the grid.

6.3.2 Anexample

We now define the interpolation structure for the competistorage example. Using the model structure
defined in Sectio®.2, we choose bounds for availability 50% below and 80% abogestbady-state value
(model.sss). Using 30 nodes and spline, the function call is:

[interp,s] = recsinterpinit(30,model.sss/2,model.sss*1.8);
The interpolation structure has the following fields:
disp(interp)

fspace: [1x1 struct]
Phi: [1x1 struct]

7 Steady state
In contrast to pertubation approaches, the determinitgady state does not play an important role in finding

the rational expectations equilibrium with collocationthmls, and thus with RECS. However, finding the
deterministic steady state proved very useful in the ol/aratel building for
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e Calibration;
¢ Definition of the approximation space;
e Calculation of a first guess using the corresponding pefteesight problem;

e Checking model structure.

7.1 Steady state definition

The deterministic steady state is the state reached in tbenab of shocks and ignoring future shocks.
Following the convention adopted in RECS (see Sedfipthe deterministic steady state is the £k, z}
of state, response and expectations variables that sblgdsltowing system of equations

X(s) <x<x(s) L f(sx2), (39)
z=h(s,x,E(e),s.X), (40)
s=g(s,xE(e)). (41)

7.2 Finding the steady state with RECS

Automatically when initializing model structure  When writing a model file (see Sectiénl, it is possi-
ble, at the end of the Yaml file in thealibration block, to define an initial guess for finding the steady
state. When the model structure is createdrbysmodelinit, if the definition of the shocks is provided
to recsmodelinit, a Newton-type solver will attempt to find the steady staaetisiy from the initial guess
provided in the model file. If a steady state is found, it iptiiged in Matlab command window.

Manually Otherwise, the steady state can be found manually by featmdunctionrecsSs with the
model and an initial guess for the steady state.

Both approaches rely on a Newton-type solver to find the gtetade.

7.3 Uses of the deterministic steady state with RECS

Calibration Compared to the stochastic rational expectations probleendeterministic steady state is
easy to find. It does not even require the definition of an ilation structure. Since in practice it is often
close to the long-run average values of the stochastic gmokthe steady state is useful for calibrating the
model so that, on the asymptotic distribution, the model reganoduce the desired long-run average (see
Sectionl2.2).

Define the approximation space As the values of the state variables in the stochastic pmolalee often
located around the deterministic steady state, the stdattyserves as a good reference point around which
the state space can be define. See Seéti®for more.
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First guess calculation for the stochastic problem The rational expectations solver requires a good first
guess to ensure convergence to the solution. RECS propogesevide a first guess by calculating the
perfect foresight problem corresponding to the stochgstiblem. The perfect foresight problem assumes
that the model converges in the long-run to its determimistttady state. See next section for more.

Checking model structure Before solving the stochastic problem, even if there are ntives for using
the steady state, it is good practice to find it in order to enthat the model written in the Yaml file behaves
as expected in this simple case.

8 First guess for the stochastic problem

The solution methods used in RECS to find the rational expentaequilibrium of a problem all rely on
nonlinear equation solvers that allow convergence onliggfdtarting point is not too far from the solution.
Hence, the importance of a good first guess.

8.1 The perfect foresight problem as a first guess

RECS can attempt to calculate for you a first guess that is gootst situations. It does it by calculating
the perfect foresight solution of the deterministic prablan which the shocks in the stochastic problem
have been substituted by their expectations:

X(s) <x<x(s) L f(sx2), (42)
z=Nh(s,xE(e),s:,%;), (43)
(S—7X—7 €)). (44)

The solver for perfect foresight problems (functibecsSolveDeterministicPb) assumes that the prob-
lem converges to its deterministic steady state after Todsri{by default T=50). The perfect foresight
problem is solved for each grid point and the resultant bienas used as a first guess for the stochastic
problem. This is done by the following call:

[interp,x] = recsFirstGuess(interp,model,s,sss,xss);

This function updates the interpolation structureterp, with the solution of the perfect foresight problem
and outputs the value of the response variables on thexgrid,

Solving time As the perfect foresight problem is solved for each pointhefdrid and for T periods, this
step can take some time. In many cases, it should be expéetiitimay take more time to find a first guess
through the perfect foresight solution than to solve thelststic problem from this first guess.
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How good is this first guess? It depends on the model and the solution horizon. For mostetspid the
state space has been properly defined (i.e., neither tod isondbo large), this first guess is good enough to
allow the stochastic solver to converge.

The quality of the perfect foresight solution as a first gudssends also on the model’'s nonlinearity. For
models with behavior close to linear, the first guess can bremely good. For example, in the stochastic
growth model the first guess leads to an initial deviatiomfr@tional expectations of 1E-5. So after a few
iterations, the solver converges to the solution. Howewethe stochastic growth model with irreversible
investment, which is much more nonlinear, the residual wétarting the stochastic solver from the first
guess is 1E-2. This is sufficient to achieve convergencei mustill far from the true solution.

8.2 User-provided first guess

It is not necessary to use the deterministic problem as afikesgs. A first guess can be provided directly by
the user. In this case there is no need to call a function, tiytto define a n-by-m matrix that provides
the values of the m response variables for the n points onriti@fjstate variable. The matrixshould then
be supplied tarecsSolveREE (see next section for more information).

9 Solve the rational expectations problem

9.1 The functionrecsSolveREE

Once the model, the interpolation structure and a first ggekgion have been defined, it is possible
to attempt to find the rational expectations equilibrium fvé imodel. This is achieved by the function
recsSolveREE.

This is done by the following call
[interp,x] = recsSolveREE(interp,model,s,x,options);

This function call returns the interpolation structusecerp with new or updated fields. Following a suc-
cessful run ofrecsSolveREE, the fieldscx andcz are created or updated imterp. They represent the
response and expectations variables interpolation cefts; respectively. These coefficients are sufficient
to simulate the model. The second output is the matiak response variables on the grid.

The options structure defines the methods used to find the rational eati@mts equilibrium, as well as
other aspects of the solution process.

9.2 Anexample

First guess from the corresponding deterministic problem If the first guess is generated by the function
recsFirstGuess, interp already includes the fields of coefficients andcz corresponding to this first
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guess, so it is not necessary to supply the value of the respeariables on the grid. For the competitive
storage model, finding the first guess and solving the mogehias the following call:

[interp,x]

[interp,x]

Successive

recsFirstGuess(interp,model,s,model.sss,model.xss,5);
= recsSolveREE(interp,model,s);

approximation

Iteration Residual

1

© 00 N O O b W N

e e e e
D O b W N, O

2.
.2E-002
.2E-002
.7TE-002
. TE-002
.6E-003
.9E-003
.1E-004
.3E-004
.2E-005
.1E-006
.0OE-006
.0OE-007
.2E-007
.5E-008
.7TE-015

N R, 01N 00O Wk~ Ok OOk N W b

4E-001

User-provided first guess If the first guess is provided by the user, there is no needdade the fields
cx Or cz in interp. The user needs only to provide an n-by-m matrithat contains the values of the m
response variables for the n points on the grid of state Maria

Our example is based on a simple first guess: storage is z&w Bteady-state availability and 70% of
availability in excess of steady state, planned produdsaqual to its steady-state value and price is given
by the inverse demand function assuming that demand is émasghilability

elastD

X

[interp,x]

Successive

model.params(6) ;
[max(0,0.7*s-model.sss) repmat(model.xss(2),size(s,1),1) s.~(1/elastD)];

= recsSolveREE(interp,model,s,x);

approximation

Iteration Residual
1 2.1E+000
2 8.6E-001
3 3.6E-001
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4 1.5E-001
5 5.4E-002
6 1.8E-002
7 5.0E-003
8 1.3E-003
9 3.4E-004
10 8.5E-005
11 2.1E-005
12 5.3E-006
13 1.3E-006
14 3.2E-007
15 7.9E-008
16 2.5E-015

With this simple model, even a naive first guess allows theesab find the solution, however it significantly
decreases the precision of the first iteration.

10 Stochastic simulations

10.1 Running a simulation

Once the rational expectations equilibrium has been foiirid,possible to simulate the model using the
functionrecsSimul with the following call:

[ssim,xsim] = recsSimul (model,interp,sO,nper);

wheremodel andinterp have been defined previously as the model and the interpolatiucture.so is
the initial state andper is the number of simulation periods.

s0 is not necessarily a unique vector of the state variablas.pidssible to provide a matrix of initial states
on the basis of which simulations can be rundper periods. Even starting from a unique state, using this
feature will speed up the simulations.

Shocks The shocks used in the simulation can be provided as theriifitht ito the function:
[ssim,xsim] = recsSimul (model,interp,sO,nper,shocks);

However, by defaultrecsSimul uses the functiofiunrand defined in the model structure (see Secta®)
to draw random shocks. If this function is not provided randibvaws are made from the shock discretization,
using the associated probabilities.

To reproduce previously run results, it is necessary ta tegerandom number generator using the Matlab
functionreset.
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Asymptotic statistics If in the options the fieldstat is set to 1, or if five arguments are required as
output of recsSimul, then some statistics over the asymptotic distribution caleulated. The first 20
observations are discarded. The statistics calculatetharmean, standard deviation, skewness, kurtosis,
minimum, maximum, percentage of time spent at the lower gmtubounds, correlation matrix, and the
five first-order autocorrelation coefficients. In additiarcsSimul draws the histograms of the variables
distribution are drawn.

These statistics are available as a structure in the fiffpubwif recsSimul:
[ssim,xsim,esim,fsim,stat] = recsSimul(model,interp,s0,nper);

Since RECS does not retain the variable names, when diggldlye statistics, the variables are organized
as follows: first state variables, followed by responsealdes, both of which follow the order of their
definition in the Yaml file.

10.2 Choice of simulation techniques

There are two main approaches to simulate the model oncepmoxamated rational expectations equilib-
rium has been found.

Using approximated decision rule The first, and most common, method consists of simulatingbeel
by applying the approximated decision rules recursively.

Starting from a knowrg, fort =1:T
X = 2 (%:Cx) (45)

Draw a shock realizatios 1 from its distribution and update the state variable:
S+1=9(%, % @+1) (46)

This is the default simulation method. It is chosen in theéarys structure by setting the fie¢d mulmethod
to interpolation.

Solve equilibrium equations using approximated expectatins The second main method uses the func-
tion being approximated (decisions rules, conditionaleexations, or expectations function) to approximate
next-period expectations and solve the equilibrium eguatto find the current decisions (in a time-iteration
approach). For example, if approximated expectatians £ (s,c;)) are used to replace conditional expec-
tations in the equilibrium equation, the algorithm runsalkoivs:

Starting from a knowrsy, fort = 1: T, find % by solving the following MCP equation using as first guess
% = 2 (%,Cx)
X(s)<x<Xs) L f(s:x2(s,¢)) (47)
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Draw a shock realizatiog | ; from its distribution and update the state variable:
S+1=0(%,%,e+1) (48)

This simulation method is chosen in the options structuredtiing the fieldsimulmethod to solve.

The two approaches differ in their speed and precision. itimng a model through recursive application of

approximated decision rules is very fast because it doeejatre solving nonlinear equations. The second
approach is slower because each period requires that arsgdteomplementarity equations be solved.
However, its level of precision is much higher, because gaimation is used only for the expectations

of next-period conditions. The precision gain is even morgdrtant when decision rules have kinks, which
makes them difficult to approximaté/Nright and Williams(1984), who first proposed the parameterized

expectations algorithm, suggest using the second methsithtdate the storage model.

When does this distinction matter? Most of the time, the default approach of recursively apulyihe
approximated decision rules should be used. Simulatingrtbdel by solving the equations should be
considered in the following two cases:

o If the model has been solved with low precision, using the@dmated decision rules can lead to
large errors, while simulating the model by solving the &bium equations using only the approxi-
mation in expectations will yield a more precise solutiohislapplies to the following example taken
from Section12.1: a price-floor policy backed by public storage. If the problis approximated by
a spline with a small grid of 6 points, it is not possible to exjpa good approximation of the highly
nonlinear storage rules. However, if the approximationsisduonly in expectations, it yields a very
precise solution:

Storage rules with a grid of 6 points

Private stock (From equilibrium equations solve)
0.5 Public stock (From equilibrium equations solve) b
Private stock (Approximated decision rule)
Public stock (Approximated decision rule) /
0.4r
x 0.3f i
[8]
e}
n
0.2 i
0.1 R
O i — Il Il Il
0.8 1 1.2 14 1.6 1.8 2
Availability
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e If you are interested in the percentage of time spent in uariegimes, solving the equilibrium equa-
tions is the only way to achieve a precise estimate. Even wbbmed with high precision, a simu-
lation using the approximated decision rules providestéohiprecision regarding the percentage of
time spent in each regime. Indeed, approximations usirigespt Chebyshev polynomials fluctuate
around the exact value between collocation nodes. So betimeenodes at which the model should
be at a bound, the approximated decision rule can yield dtnesty close to the bound without ac-
tually satisfying it. Below are the moments obtained fromwating the model in Sectioh?.1with
both methods and with decision rules approximated on 3010Hee moments are quite similar, but

the approximated decision rules widely underestimateithe $pent at the bounds:

Long-run statistics from equilibrium equations solve

Statistics from simulated variables (excluding the first 20 observations):

Std. Dev. Skewness

Moments
Mean
1.2349 0.1199
0.0007 0.0050
1.0026 0.0049
1.0149 0.0523
0.2369 0.1141
Correlation
1.0000 0.2742
0.2742 1.0000
-0.8393 -0.4928
-0.4939 -0.4930
0.9947 0.1947
Autocorrelation
1 2
0.8617 0.7473
0.1079 0.0352
0.6710 0.4936
Inf Inf
0.8712 0.7592

-0.2424

9.7021
-0.7963
3.55651
-0.3280

-0.8393
-0.4928
1.0000
0.6688
-0.7992

0.6491

0.0165
0.3824

Inf
0.6618

Kurtosis
2.

115.
6.
65.
2.

3425

6033
7106
9633
0886

.4939
.4930
.6688

1.0000

L4127

.5629

0.0054
0.3068

NaN

.5751

Min

0.

8457

0.9667
0.7463

0.9947
0.1947

. 7992
L4127
.0000

0.4876

.0009
.25651

-Inf

.4981

Max
1.5736

0.1133
1.0160
2.3121
0.4000

LB

96.4720
0

0
2.3400

Long-run statistics if simulated with approximated decision rules

Statistics from simulated variables (excluding the first 20 observatiomns):

Moments
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Mean Std. Dev. Skewness Kurtosis Min Max %LB %UB
1.2346 0.1200 -0.2457 2.3441 0.8458 1.5726

0.0008 0.0050 9.3978 112.0988 0 0.1125 48.8260 0

1.0026 0.0049 -0.7267 6.6960 0.9669 1.0163 0 0

1.0144 0.0511 4.3173 74 .2896 0.7466 2.3105 0 0

0.2364 0.1140 -0.3384 2.0941 0 0.4000 1.6080 4.5290
Correlation

1.0000 0.3114  -0.8411 -0.4970 0.9948
0.3114 1.0000 -0.5348 -0.5403 0.2300
-0.8411 -0.5348 1.0000 0.6827  -0.7998
-0.4970  -0.5403 0.6827 1.0000 -0.4164
0.9948 0.2300 -0.7998 -0.4164 1.0000

Autocorrelation
1 2 3 4 5
0.8620 0.7476 0.6495 0.5633 0.4880
0.1818 0.0850 0.0502 0.0315 0.0214
0.6713 0.4938 0.3817 0.3067 0.2555
0.2894 0.1596 0.1008 0.0676 0.0524
0.8716 0.7597 0.6624 0.5757 0.4986

11 Sketch of the numerical algorithm

The numerical algorithms used in RECS are inspiredMinanda and Fackle(2002), Fackler(2005 and
Miranda and Glaubef1995. These are all projection methods with a collocation apgho Several meth-
ods are implemented, but we will only present here the defend: the approximation of response variables
behavior in a time iteration approach. As already explaiaaiodel is characterized by three equations:

X(s) <x<x(s) L f(sx2), (49)
Z:E[h(axae-‘ms-&-axﬂ‘-)]? (50)
s=g(s_,x_,e). (51)

One way to solve this problem is to find a function that is a gapdroximation for the behavior of the
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response variables. We consider an approximation of regpaariables,
X~ '% (Sv CX) ) (52)

wherecy are the parameters defining the spline or Chebyshev appatigim To calculate this approxima-
tion, we discretize the state space, and the approximatieridhhold exactly for all points on the grid.

The expectations operator in equati&@®)(is approximated by a Gaussian quadrature, which defines a se
of pairs{e,w } in which g represents a possible realization of shocksani$ the associated probability.
Using this discretization, and equatiofi®)—(52), we can express the equilibrium equatid®)(as

X(s) <x<x(s) L f <S,X,Zw|h(s,x,a,g(s,x,a),%(g(s,x,a),cx))> . (53)

For a given approximatiorty, and a givers, equation $3) is a function ofx and can be solved using a mixed
complementarity solver.

Once all the above elements are defined, we can proceed tlythéhan, which runs as follows:

1. Initialize the approximatiorcy, based on a first-gues€?).

2. For each point of the grid of state variablgssolve forx; equation $3) using an MCP solver:

x(s)<x <X(s) L f(s,m,zwlh(s,m,a,g(s,m,a),%<g(s,>q,a),C§”)))>. (54)

3. Update the approximation using the new values of respaasablesx = 2~ (s, c)<(”+l)>.

4. If Hc>((”+1) —c |l2 > €, wheree is the precision we want to achieve, then increnrettn+ 1 and go
to step2.

Once the rational expectations equilibrium is identifiggy &pproximation of the decision rules is used to
simulate the model.

This is only a sketch of the solution method. In fact, sevenathods are implemented. For example,
instead of using the simple updating rule in sBep Newton, or inexact Newton, updating can be used when
feasible.

12 Examples of storage models

This section presents some examples of rational expeasatimdels and their implementation in RECS. For
the simple competitive storage model, please see thedliorsections.
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12.1 Competitive storage with floor-price backed by public ®rage (model: STO2)

This model is a simple extension of the competitive storagdehin which government attempts to defend a
floor price through public storage sale and purchase. Theshpodsented here is close to one of the models
presented iWright and Williams(1988).

This policy is characterized by the following interventiaule, similar to that applying to price band in
Section5.5. All public stocks are sold if the price exceeds the intetiamprice:

R>P =S =0 (55)
Price can decrease below the floor if the capacity constsir binding:
R<PF=F=5 (56)
Public stock accumulation occurs to defend the floor price:
R=P =>0<§F<S. (57)
These three conditions can be written as one complemegnéayitation:

0<$<S L R-P" (58)

Using the same assumptions as in the competitive storagelnpogisented in Sectio8, the equations
defining this model are for equilibrium equations

§:9>20 L R+k—(1-9)BE(R1) >0, (59)
Hi : BE; (Ry1&+1) = hHH, (60)
RIA=R"+S+, (61)
FL:0<Ff< 1L R-P (62)

and for the transition equation
AcA=(1-08)(S-1+,) +H1&. (63)

It should be noted that this model has only one state variabailability (&), because the decision to
accumulate public stock depends only on current avaitgpbiibt on past public stock.

A simulation of this model involves exactly the same stepmadkhe competitive storage model, so we do
not repeat them here; rather, we focus on welfare analygies$s The reader can consult the §t®2.m in
RECS demonstration files to see the model resolution.
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Welfare analysis Given that this is a simple model, we use it to illustrate adfanalysis in this dynamic
stochastic setting. Instantaneous social welfarg,here, is the sum of consumer’s surplus, producer’s
surplus, storer’s surplus and public cost:

W = /HPD (p)dp+RH 16— W(H)+ (1-0)RS 1— (k+R)S+(1-0)RS ; — (k+R)S. (64)

Ignoring in consumer’s surplus the term independent froficpahoice and rearranging using3), we
have
Pt1+a

wt:—Ha+F{A¢—W(Ht)—(k+3)(s+§)- (65)

Intertemporal welfare is given B = S o B'wi. It is clear that this infinite sum can be expressed as a
recursive equation:

1+a

W = T RAC W(H) — (4 R) (§ +57) + BB (W), (66)

Similarly consumer welfare could be calculated recurgies

1+a

WEWE = L g (WE). ©7)

Calculating the welfare of the other agents is not as simgbabse it generally involves additional state vari-
ables. Indeed, producer’s welfare depends on past plamoedgiion as well as availability, and similarly,
storer’s welfare is a function of past private stock. So ihiportant to find a way to express these welfare
changes as a function only of availability. Since the pgvsitorer operates in expectations at zero profit,
its welfare can be reduced to the first-period benefit frondingl stocks:(1— &) PyS_1. Similarly, we can
decompose producer’s welfare between the first-periodgghand later changes: producer’s welfare at time
0 is equal toPoH_160 + W, where

WPt WP = BE (Ri1&1) Hi — W (H) + BE (W) (68)

We assume that public stocks are zero when the policy startgpvernment benefits or losses from public
storage are

WE:WC =[(1-8)BE (R11) —k— RS+ BE (WC). (69)

Equations §6)—(69) can be included in the model definition file (available in &it&2welf . yaml):
# STO2WELF.yaml Model definition file for the competitive storage with floor-price backed by public storag
# Copyright (C) 2011-2012 Christophe Gouel
# Licensed under the Expat license, see LICENSE.txt

declarations:

states: [A]

40



controls: [S, H, P, Sg, W, Wc, Wp, Wgl
expectations: [EP, EPe, EW, EWc, EWp, EWg]
shocks: [e]

parameters: [k, delta, r, h, mu, elastD, elastS, PF, Sgbar]

equations:
arbitrage:

S <= inf

-inf <= H <= inf

-inf <= P <= inf
0 <= Sg <= Sgbar

-inf <= W <= inf

-inf <= Wc <= inf

- P+k-EP*(1-delta)/(1+r)

- EPe/(1+r) = h*H mu

- A = PTelastD+S+Sg

- P-PF

- W = -P~(1+elastD)/(1+elastD) +P*A-h*H~ (1+mu) / (1+mu) - (P+k) * (S+Sg) +EW/ (1+r)
- Wec = -P~(1+elastD)/(1+elastD)+EWc/(1+r)

- Wp = EPexH/(1+r)-h*H"~ (1+mu)/(1+mu)+EWp/ (1+r) -inf <= Wp <= inf
- Wg = Sgx(EP*(1-delta)/(1+r)-P-k)+EWg/(1+r) -inf <= Wg <= inf
transition:

- A = (1-delta)*(S(-1)+Sg(-1))+H(-1)*e

expectation:
- EP =PQ)
- EPe = P(1)*e
-EW =w@)
- EWc = Wc(1)
- EWp = Wp(1)
- EWg = Wg(1)
calibration:
parameters:
k : 0.06
delta : 0.02
r : 0.03
elastS : 0.2
h : 1/(1+r)
mu : 1/elastS
elastD : -0.2
PF :1.02
Sgbar : 0.4
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steady_state:

1
H¢)
1
1

Uom o=

Sg : Sgbar

W : (-P~(1+elastD)/(1+elastD)+P*A-h*H"~ (1+mu)/(1+mu)- (P+k)*(S+Sg))/(1-1/(1+r))

Wec : (-P~(1+elastD)/(1+elastD))/(1-1/(1+x))

Wp : (PxH/(1+r)-h*H"~ (1+mu)/(1+mu))/(1-1/(1+r))

Wg : Sg*(EP*(1-delta)/(1+r)-P-k)/(1-1/(1+r))
To analyze the welfare effect of introducing this policy, heve to introduce the same welfare equations
in the competitive storage model. The model without poliog éhe model with policy are solved in the
Matlab filesto2welf .m:

function sto2welf
% STO2WELF Solves the floor-price model and calculates welfare changes

%% Pack model structures

Mu =1;

sigma = 0.05;

modell = recsmodelinit(’stolwelf.yaml’,struct(’Mu’,Mu,’Sigma’,sigma~2,’order’,7));
model?2 = recsmodelinit(’sto2welf.yaml’,struct(’Mu’,Mu,’Sigma’,sigma~2,’order’,7));

%% Define approximation space

[interpl,s] = recsinterpinit(50,0.7,2);

interp2 interpl;

%% Find a first guess through the perfect foresight solution
interpl = recsFirstGuess(interpl,modell,s,modell.sss,modell.xss,5);

interp2 recsFirstGuess(interp2,model2,s,model2.sss,model2.xss,5);
%% Solve for rational expectations (option: hide iterations)
[interpl,x1] = recsSolveREE(interpl,modell,s, [],struct(’display’,0));
[interp2,x2] = recsSolveREE(interp2,model2,s, [],struct(’display’,0));

%% Long-run simulation
[~,~,~,”,stat] recsSimul (modell,interpl,ones(1E4,1),200);
[~,”,”, ,stat] = recsSimul(model2,interp2,ones(1E4,1),200);

%% Welfare change
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sinit = [1 0.2];

[W1,W2] = WelfareCalculation([1 0.2]);

DW = W2-W1;

disp(’Welfare change:’)

disp (DW)

fid = fopen(’./Published/sto2welf.tex’,’w’);
fwrite(fid,latex([DW(2:end) DW(1)1,°%0.4£°));
fclose(fid);

%% Plot social welfare against initial availability
n = 100;
res = zeros(n,1);
HO
for i=1:n
[W1,W2] = WelfareCalculation([HO(i) 0]);
res(i) = W2(1)-Wi(1);

end

linspace(0.8,1.7,n);

figure

plot (HO,res)

xlabel (’Initial availability’)
ylabel(’Change in social welfare’)
set(gcf,’Color’,’w’)

export_fig sto2welf.eps

function [Welfl,Welf2] = WelfareCalculation(sinit)
% sinit is the decomposition of initial state between production and private

% stock: [H*eps (1-delta)*S]

%% Simulate the model for a given initial state variable to get welfare values

[7,xsiml] recsSimul (modell,interpl,sum(sinit),0);

[7,xsim2] = recsSimul (model2,interp2,sum(sinit),0);

PO = [xsim1(3) xsim2(3)];
beta = 1/(1+modell.params(3));

%% Calculate welfare
Welfl = [xsim1(4:5) PO(1)*sinit(1)+xsim1(6) PO(1)*sinit(2) 0]*(1-beta);
Welf2 = [xsim2(5:6) PO(2)*sinit(1)+xsim2(7) PO(2)*sinit(2) xsim2(8)]1*(1l-beta);

end
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end

This generates two results: the welfare changes inducetiebpdlicy when it starts from a given initial
availability, and the sensitivity analysis of social wedfao initial availability. Tablel shows the welfare
change if initial availability is 1.2 of which 1 comes fromqggpluction. Given the absence of any market
imperfections, the competitive equilibrium is optim&cheinkman and Schechtmd®83 and the policy
decreases social welfare. It decreases consumer’s wekamise of the initial price increase due to stock
buildup and because of the negative slope of the demandidanathich implies that consumers prefer
unstable to stable pricadaugh(1944). In contrast, producer and storer benefit from the policyabse of
the initial price increase.

Table 1. Welfare Results on Transitional Dynamicgas a percentage of the steady-state commodity budget)

Consumer Producer Storer Government Total
—0.0198 00237 Q0017 —0.0255 —0.0199

Figure 1 shows how social welfare is affected by initial availalilitWelfare changes are constant for low
availability, as nothing is stored. For a sufficiently higlaiability, the floor price starts to be binding and
public storage kicks in so social welfare decreases. Itedsgs until an availability of 1.4, where public
stock hits its capacity constrairg® = 0.4.
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Change in social welfare
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Initial availability

Figure 1. Sensitivity of social welfare to initial availabiity
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12.2 Two-country storage-trade model (model: STO6)

In this section, we describe a model that is useful to anallgeeeffects of the interaction between one
country’'s domestic food market and the rest of the world: a-6twuntry storage-trade model. This model
extends the competitive storage model to a situation withlbeations, countriea andb indicated by the
subscripti € {a,b}.1% It assumes that in each country there is a demand for finaLiegpison, production,
and competitive storage.

The countries are connected through trade, which occurs wieeprice difference covers the trade costs.
Trade is decided by the following spatial arbitrage conditi

Xg>0 L PRi+6>Py, forj#i, (70)

whereX;; is the export from region and®@ is the per-unit transaction cost, inclusive of transpostgoThis
implies that the prices in countiiyfall within a moving band that is defined by countjyprice and trade
costs:

Pir— 60 <P <Pi+86, for j #i. (71)

When adjusted for the subscrigtand j, the model’s equations are similar to the single countrg cas-
cept for market equilibrium, which now accounts for trade tBe equations defining this model are for
equilibrium equations, fore {a,b} andj # i:

St:S5>0 L PRi+k—(1-9)BE(Pti1) >0, (72)
Hit : BEt (Rtr1&it1) = hiHitk, (73)
Rt : Ait + Xjt = ¥Rt + St + Xit, (74)
Xi:X%t>0 L1 PBi+6>Py, (75)

whereh; andy; are country-specific scale parameters for supply and deniemgl transition equations are,
fori e {a,b}:
Ait i At = (1—0) St—1 + Hit—18it- (76)

Calibration on real data While the previous models were calibrated on arbitrary dadee we show how
to calibrate a model on real data. For this, we follbarson et al.(2012 who calibrate a similar model
for the wheat market between the Middle East and North AffM&NA) region and the rest of the world
(Row)?

Storage models in the current literature are not calibrateskd on the time-series behavior of the corre-
sponding variables as is common for DSGE models. In additimre is no procedure in the RECS toolbox

16The trade-and-storage model was first developed/itiams and Wright(1991, Ch. 9), and was subsequently analyzed in
Miranda and Glaubg1999, andMakki et al.(1996).

17In this case, the MENA region includes Algeria, Bahrain, figyran, Irag, Jordan, Kuwait, Lebanon, Libya, Morocco, &m
Saudi Arabia, Syria, Tunisia, United Arab Emirates, and ¥am
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to make these calibrations automatically. Consequeritly,calibration we present here aims at ensuring
that a benchmark equilibrium is reproduced at the detestinsteady state, and remaining behavioral pa-
rameters are set based on literature survey.

The calibration focuses on the steady state because it caohmd easily without having to solve for the
stochastic rational expectations equilibrium, and singaractice it is close to the long-run mean, calibrating
the steady state on average observed values should reprtftRro as the long-run average of the model
variables. To help the calibration, note that we have ncag®rmat steady state since prices are constant:
S =0, wherex indicates variables at their steady-state values. Sirgze=H, we have alsé\" = H*. As

can be seen in Tabla the MENA region is always importing wheat, which impliesath

Xgow > 0, (77)
Xuena = 0, (78)
Puvena = Prow + 6. (79)

It is important to note that a storage model represents miséay equilibrium, but the corresponding data
are not stationary. So, to calibrate the model, we start nowing the underlying trend. The detrended
data are presented in Tal2e Since there is no stock at the steady state, quantitiestbave adjusted to
be consistent with a steady-state equilibrium. The stestiate MENA price is defined by assuming that the
price difference between the regions reflects transpoiscadich is set at $35.55/ton based on a recent
survey World Bank and FAQ2012. Choosing a reference equilibrium point is not sufficientissign a
value to every parameter. To pick up parameters that carealdmntified at the steady state (elasticities,
storage costs, discount rate), we rely on the literature akl¥eguided by the literature on commaodity price
dynamics, which shows that observed price volatility issistent with relatively low demand elasticities
(Roberts and Schlenke2009 Cafiero et al.2011), thus, we assume demand elasticity to be equaldd 2,
which is toward the lower end of commonly used elasticiti#ge consider a supply elasticity of 0.2, in
line with commonly used supply elasticities for whé&tinterest rates and per unit storage charges are
assumed to be the same for each region at 5% per annum and $22.4on per annum, respectively.
The storage costs are based on the findings from a recent Barik study on wheat markets in MENA
(World Bank and FAQ2012.

Using these behavioral parameters and target values atdhdysstate, we can calculdbeand y using
equation {3) and (74).
This model and its calibration are written in the Yaml| fileo6MENA . yam1 :

# STO6MENA.yaml Model definition file for a two-country storage-trade model with supply reaction (calibrat
# Copyright (C) 2011-2012 Christophe Gouel
# Licensed under the Expat license, see LICENSE.txt

# Country a is MENA, and b is RoW

1835ee, for example, FAPRI's elasticity database, availabkaeinternet aittp: //www. fapri.iastate.edu/tools/elasticity.aspx.
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Table 2. Model calibration

MENA Row
Calibration target at steady state
Consumption (million ton) 75.3 592.9
Production (million ton) 40.2 628
Price ($/ton) 211.55 176
Parameter
a -0.12
B 0.9524
Vi 143.2 1102.7
o 0
std(&) 0.07 0.03
6 35.55
U 5
hj 1.92E-6 1.72E-12
k 22.4

Notes: Consumption, production and price in RoW targetsiatermined as 2011 trend values after applying a Holdrigsébtt
filter (smoothing parameter of 400) to the underlying dat&4, 2011, for consumption and production and World Bank,120
for price). RoW consumption is adjusted to ensure globaketagquilibrium. MENA price target is defined by adding tnao

cost to RoW price.

declarations:

states: [Aa, Ab]

controls: [Sa, Sb, Ha, Hb, Pa, Pb, Xa, Xb]

expectations: [EPa, EPb, EPea, EPeb]

shocks: [ea, eb]

parameters: [k, r, delta, ha, hb, mu, elastS, theta,

equations:

arbitrage:

. Patk-EPax*(1-delta)/(1+r)
. Pb+k-EPbx(1-delta)/(1+r)

. EPea/(1+r)
. EPeb/(1+r)

haxHa"mu
hb*xHb~mu

. Aa+Xb = gammaa*Pa~elastD+Sa+Xa
. Ab+Xa = gammab*Pb~elastD+Sb+Xb

0 <= Sa <= inf
0 <= Sb <= inf
-inf <= Ha <= inf
-inf <= Hb <= inf
-inf <= Pa <= inf
-inf <= Pb <= inf

a7

elastD, gammaa, gammab, beta]



. Pa-Pb+theta | 0 <= Xa <= inf

. Pb-Pat+theta | 0 <= Xb <= inf
transition:
. Aa = (1-delta)*Sa(-1)+Ha(-1)*ea
. Ab = (1-delta)*Sb(-1)+Hb(-1)*eb
expectation:
. EPa = Pa(1)
. EPb = Pb(1)
. EPea = Pa(l)x*ea
. EPeb = Pb(1)*eb
calibration:
parameters:
k 1 22.4
r : 0.05
beta : 1/(1+1r)
delta : O
elastS : 0.2
mu : 1/elastS

elastD : -0.12

theta : 35.55

gammaa : (Aa+Xb-Sa-Xa)/Pa~elastD
gammab : (Ab+Xa-Sb-Xb)/Pb~elastD
ha : Pax*beta/Ha"mu

hb : Pb*beta/Hb mu

steady_state:

Aa : Ha

Ab : Hb

Sa : 0

Sb : 0

Ha : 40.2
Hb : 628
Pa : 211.55
Pb : 176
Xa : 0

Xb : Hb-592.9

It can be seen that the values entered for the parametersranduess of the steady state may each be
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function of the other, which facilitates model calibration

The model is solved using the same commands as before, foutd6MENA . m.
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